3GPP TSG-RAN WG2 Meeting #98
R2-1705614
Hangzhou, China, 15th – 19th May 2017
Agenda item:

9.3.3 (Release 15 UDC)
Source:
Qualcomm, Sprint
Title:
Comparison of UDC candidate solutions under agreed metrics
Document for:

Discussion and Decision
1 Introduction

The following performance metrics were agreed in RAN2#97bis and captured in the latest TR draft [2] in RAN2 email discussion “[97bis#27][LTE/UDC] Running TR of UDC (CATT)”.

Compression efficiency as per the following formulation is considered for performance metric in evaluation of different UL data compression solutions.

Compression efficiency = 1 – (output data size / input data size)

High computation complexity of compression algorithm degrades usefulness of UDC even if the resulted compression efficiency is significant. Additionally, required memory for compression/ decompression also has impacts on the overall performance of UL data compression algorithms. Therefore, not only the compression gain but also processing complexity of compressor/ de-compressor and memory requirements are agreed as the criteria for performance evaluation. Even though it may not be possible to quantify the processing complexity, qualitative analysis of complexity is expected in the performance evaluation. In addition, the evaluation criteria of a compression solution shall take into account the byte alignment and reliability.
In summary, RAN2 agreed to use the following criteria to evaluate UDC candidate solutions.

1. Compression efficiency

2. Processing complexity of compressor / de-compressor
3. Memory requirements

4. Byte alignment of compressed data
5. Reliability

In this document, we analyze and compare the three UDC candidate solutions under these metrics. We name the candidate UDC Solution 4 from Qualcomm in R2-1703583 as “Adpative Packet Data Compression (APDC)”.
2 Evaluation of Deflate as in RFC 1951
RFC 1951 Section 3.2.3 text below (highlighted in yellow) indicates that RFC 1951 (Deflate) compressed data format is not guaranteed to be byte-aligned.

Each block of compressed data begins with 3 header bits

 containing the following data:

 first bit BFINAL

 next 2 bits BTYPE

 Note that the header bits do not necessarily begin on a byte

 boundary, since a block does not necessarily occupy an integral
 number of bytes.
Observation 1: RFC 1951 (Deflate) compressed data format is not guaranteed to be byte-aligned.
To make sure that the decompression of a packet is correct, the decompressor need info (e.g., check bits, checksum or parity bits) to check either the decompressed packet or the compression memory. Such information is missing in the compressed packet format in RFC 1951 (Deflate).
Observation 2: RFC 1951 (Deflate) compressed data format does not have parameter for the decompressor to check if the decompression is correct or not.

As there is no design in RFC 1951 (Deflate) to detect decompression errors, Deflate does not design reset either. To enable UDC recovery/reset, the compressed data header need a flag to tell the decompressor which packet is the first packet after reset. Without such info, even though eNB tells UE via RRC to reset UDC, the decompressor does not know which packets are the first packet after reset. Such information is missing in Deflate.
Observation 3: RFC 1951 (Deflate) does not have required parameter in the compressed data format to tell decompressor whether a packet is compressed after UDC recovery/reset.
3 Evaluation of Zlib as in RFC 1950

RFC 1950 is based on Deflate and specifies additional compressed data format and check sum to assist decompression. It inherits some issues from Deflate and fixes some issues of Deflate. The text below is from RFC 1950.

 This specification defines a lossless compressed data format. The

 data can be produced or consumed, even for an arbitrarily long

 sequentially presented input data stream, using only an a priori

 bounded amount of intermediate storage. The format presently uses

 the DEFLATE compression method but can be easily extended to use

 other compression methods.

Observation 4: RFC 1950 (Zlib) is based on Deflate (RFC 1951).
Every compressed packet of RFC 1950 (Zlib) contains a CMF header field with length of 8 bits as following.

 bits 0 to 3 CM Compression method

 bits 4 to 7 CINFO Compression info

 CM (Compression method)

 This identifies the compression method used in the file. CM = 8

 denotes the "deflate" compression method with a window size up

 to 32K.

 CINFO (Compression info)

 For CM = 8, CINFO is the base-2 logarithm of the LZ77 window

 size, minus eight (CINFO=7 indicates a 32K window size). Values

 of CINFO above 7 are not allowed in this version of the

 specification. CINFO is not defined in this specification for

 CM not equal to 8.

The information in CMF is semi-static, therefore it should be configured by RRC and not be included in every compressed packet. Bits 0 to 3 of CMF (field name: CM) indicate which compression algorithm is used, we expect the compression algorithm to be unchanged within a RRC connection unless there is RRC reconfiguration, so there is no need to indicate the compression algorithm in every compressed packet. Bits 4 to 7 of CMF (field name: CINFO) indicate the compression memory size which should be constant in a RRC connection.

Observation 5: RFC 1950 compressed data format requires the following parameters to be included in every compressed packet: CM (Compression algorithm, 4 bits), CINFO (compression memory size, 4 bits). These parameters are semi-static. Therefore, they should be configured by RRC and not be included in every compressed packet.
Every compressed packet of Zlib contains a FLG header field with length of 8 bits as follows

 bits 0 to 4 FCHECK (check bits for CMF and FLG)

 bit 5 FDICT (preset dictionary)

 bits 6 to 7 FLEVEL (compression level)

LTE PHY layer has CRC check, so there is no need to include the 5-bit check bits “FCHECK” for the compressed data header fields CMF and FLG. “FLEVEL” is not required because RFC 1950 says “A decompressor may ignore FLEVEL and still be compliant” and “The information in FLEVEL is not needed for decompression”.

Observation 6: RFC 1950 compressed data format requires the following parameter to be included in every compressed packet: FCHECK (check bits for compression header fields, 5 bits). LTE PHY layer has CRC check, so FCHECK is not needed.
Observation 7: RFC 1950 compressed data format requires the following parameter to be included in every compressed packet: FLEVEL (2 bits). The information in FLEVEL is not needed for decompression; therefore, it is not needed.

Every compressed packet of Zlib contains a 32-bit ADLER32 field which contains a checksum value of the uncompressed data. This can help the decompressor to verify if the decompression is correct or not. We agree that we need a way for the decompressor to detect decompression error, however, the eNB-UE link is very reliable due to PHY CRC and RLC AM mode, so decompression errors are rare, we do not need so many bits (32 bits) in every packet to detect errors. A few bits (<= 8 bits) in every packet are sufficient, because error probability is small, in addition, even if error is not detected in one packet, it can be detected by the checksums in the following packets.
Observation 8: RFC 1950 compressed data format requires the following parameter to be included in every compressed packet: ADLER32 checksum value of the uncompressed data (32 bits). LTE link is reliable due to PHY CRC and RLC AM, so a few bits (<= 8 bits) in every packet are sufficient to detect decompression error.
Based on the above observations, we observe below.

Observation 9: the following parameters in RFC 1950 (Zlib) are not need for every compressed packet, totally 39 bits. This shows Zlib is sub-optimal.
· CM (Compression algorithm, 4 bits),

· CINFO (compression memory size, 4 bits)
· FCHECK (check bits for compression header fields, 5 bits)
· FLEVEL (2 bits)

· 24 bits out of the 32-bit ADLER32 checksum
Observation 10: RFC 1950 (Zlib) compressed data format has ADLER32 checksum for the decompressor to check if the decompression is correct or not.

RFC 1950 (Zlib)’s compressed data format is below. The header parts are byte-aligned. However, the compressed data blocks are based on Deflate and not byte-aligned based on our observation in Section 2.

[image: image1.png]
Figure 3-1: Zlib-based compressed data format (courtesy to Figure 7.2.2.1.2 from latest UDC TR draft)
Observation 11: RFC 1950 (Zlib) compressed data format is not guaranteed to be byte-aligned, because it is based on Deflate compressed data format.
Similar to RFC 1951 (Deflate), Zlib has the same issue below.

Observation 12: RFC 1950 (Zlib) does not have required parameter in the compressed data format to tell decompressor whether a packet is compressed after UDC recovery/reset.
4 Computation complexity comparison
A summary of the three proposed UDC solutions is below. Step 1 is the same for the three solutions. The main difference is in Steps 2 and 3. Deflate and Zlib requires Huffman encoding in Step 2, while APDC mainly writes the into UDC headers and copy mismatched bytes to the compressed packet.

	Table 4-1 Comparison of Compressor Side Computation Complexity

	
	Step 1
	Step 2
	Step 3

	Deflate (RFC 1951)
	Search for repeated strings from compression memory (e.g., LZ77).

	Huffman encoding.
	

	Zlib (RFC 1950)
	
	Huffman encoding.
	Add Zlib header; compute checksum for decompressor to verify decompression result.

	APDC
	
	Write the matching and mismatching information (like pointers) into UDC headers and copy mismatched bytes to the compressed packet.
	Compute checksum for decompressor to verify decompression result.

From the above table, we have the following observation.

Observation 13: at UDC compressors side
· Step 1 is the same for the three solutions.

· Step 2: Deflate and Zlib requires Huffman encoding while APDC simply writes matching and mismatching information into UDC headers and copy mismatched bytes to the compressed packet.
· Step 3: Zlib and APDC requires checksum computation
	Table 4-2 Comparison: Decompressor side Computation complexity

	
	Step 1
	Step 2
	Step 3

	Deflate (RFC 1951)
	Huffman decoding.
	Copy matched bytes from compression memory to the decompressed packet (memory copy).
	

	Zlib (RFC 1950)
	Huffman decoding.
	
	Compute checksum to verify decompression result.

	APDC
	[Nothing]
	
	Compute checksum to verify decompression result.

From the above table, we have the following observation.

Observation 14: at UDC decompressors side
· Step 1: Deflate and Zlib requires Huffman decoding while APDC does nothing in Step 1.
· Step 2 is the same for the three solutions.
5 Compression efficiency comparison
A summary of the three proposed UDC solutions is below. Numbers were from email discussion [97bis#28].
	Table 5-1 Comparison of the compression efficiency of three UDC candidate solutions

8K Byte buffer; Green=Biggest; Yellow=Smallest.

	PCAP File #
	PCAP File
	Compression Efficiency –
Deflate
	Compression Efficiency –
Zlib
	Compression Efficiency –
APDC
	Max - Min (green - yellow)

	1
	FTP- Client (CMCC)
	51.69%
	50.50%
	54.74%
	4%

	2
	FTP- Server (CMCC)
	46.02%
	45.10%
	50.39%
	5%

	3
	Online video (CMCC)
	65.56%
	65.10%
	62.04%
	4%

	4
	Long period video (CMCC)
	73.37%
	72.90%
	78.44%
	6%

	5
	SIP UE1(CMCC)
	86.99%
	86.70%
	85.61%
	1%

	6
	SIP UE2 (CMCC)
	84.94%
	84.20%
	82.16%
	3%

	7
	SIP UE3 (CMCC)
	87.31%
	87.20%
	85.94%
	1%

	8
	Web surfing (CMCC)
	66.99%
	66.30%
	67.75%
	1%

	9
	Video data (MediaTek)
	61.26%
	60.70%
	73.98%
	13%

	10
	Long duration FTP (MediaTek)
	63.91%
	63.60%
	75.34%
	12%

	11
	Multiple IP flows (Qualcomm)
	73.03%
	72.30%
	75.32%
	3%

	N/A
	Average over all PCAP files
	69.19%
	68.60%
	71.97%
	3%

Observation 15: Deflate and APDC overall have similar compression efficiency in 11 test PCAP files.
Observation 16: APDC has the best compression efficiency in 7 out of 11 test PCAP files.
Observation 17: Deflate has the best compression efficiency in 4 out of 11 test PCAP files.

6 Other considerations
RAN2 provided the following three opportunities for companies to propose their UDC solutions and share their evaluation results.

1. RAN2#97 email discussion: email discussion [97#61][LTE/UDC] Phase 2
2. RAN2#97bis

3. RAN2#97bis email discussion: [97bis#28][LTE/UDC] Continued simulation and comparison of solutions on UDC (CATT)
The RAN2#98 meeting in May 2017 is the last meeting of the UDC SI. As of 2nd of May 2017, all UDC solutions were proposed in the RAN2#97 email discussion above, with details in RAN2#97bis contributions and refinements in RAN2#97bis email discussion. If a new UDC solution or change to existing UDC solution is proposed, there is no time for other companies to study it, so it is unfair to the proponents of existing candidate UDC solutions.
Compressed data format determines a UDC solution’s performance in terms of many metrics. As we have seen, it takes big efforts for companies in RAN2 to perform a full study based on the three candidate UDC solutions. If we change the compressed data format in one of the candidate UDC solution, it effectively becomes a new solution which is not fair for other existing candidate solutions.

Proposal: To capture the following into the “Conclusion” section of the TR.

· In RAN2#98 meeting and the following UDC WI (if any), only the UDC Compressed data formats as proposed in RAN2#97bis will be used, no further change should be made to the UDC compressed data formats as proposed in RAN2#97bis.
7 Conclusion and Text proposal
Proposal 1: to capture Table 4-1, Table 4-2, Table 5-1 and the following Table 7-1 into the “Conclusion” section of the TR.
	Table 7-1 Evaluation and Comparions of Three Candidate Full-Packet Compression UDC Solutions (not including ROHC)

	
	Candidate UDC solutions

	Evaluation criteria as agreed by RAN2.
	Deflate

RFC 1951
	Zlib

RFC 1950
	APDC

(Solution 4 in the TR)

	1). Compressed data is Byte-aligned
	No (according to RFC 1951 text)
	No (Zlib uses Deflate compressed blocks)
	Yes

	2). Reliability: error detection at decompressor
	No
	Yes (32-bit ADLER32 checksum for decompressed packet)
	Yes (4 bits checksum for compression memory)

	3). Reliability: required parameter in the compressed data format to tell decompressor whether a packet is compressed after UDC recovery/reset
	No
	No
	Yes (by setting UDC header field “packet action” to ‘101’)

	4). Memory size
	Configurable Compression memory (e.g., 8Kbytes)
	Configurable Compression memory (e.g., 8Kbytes)
	Configurable Compression memory (e.g., 8Kbytes), and 32 Bytes UDC header memory.

	5). Compressor side Computation complexity
(Details in Table 4-1)
	(1) Searching repeated strings (2) Huffman coding
	(1) Searching repeated strings (2) Huffman coding (3) checksum calculation
	(1) Searching repeated strings (2) no processing (3) checksum calculation

	6). Decompressor side Computation complexity (Details in Table 4-2)
	(1) Huffman decoding (2) Memory copy
	(1) Huffman decoding (2) Memory copy (3) checksum calculation
	(1) no processing (2) Memory copy (3) checksum calculation

	7). Compression efficiency
1 – (output data size / input data size)
(Details in Table 5-1)
	Best results in 4 out of 11 test PCAP files with margin up to 4%.

Average: 69.19%

	Best results in zero out of 11 test PCAP files.
Average: 68.60%
(See Observations in Section 3 for theoretical analysis)
	Best results in 7 out of 11 test PCAP files with margin up to 13%.
Average: 71.97%

Proposal 2: RAN2 to exclude Zlib (RFC 1950) for Release 15 UDC SI/WI due to reasons below.
1. Compressed data is not guaranteed to be Byte-aligned according to RFC 1950
2. Reliability issue: missing required parameter in the compressed data format to tell decompressor whether a packet is compressed after UDC recovery/reset.

3. Computation complexity: Zlib requires additional processing of “Huffman coding” compared with APDC. However, Zlib’s Compression efficiency is lower than APDC.

Proposal 3: RAN2 to exclude Deflate (RFC 1951) for Release 15 UDC SI/WI due to reasons below.

1. Compressed data block is not Byte-aligned according to RFC 1950 on which RFC 1951 is based
2. Reliability issue: missing required parameter in the compressed data format to tell decompressor whether a packet is compressed after UDC recovery/reset.

3. Reliability issue: no mechanism for decompressor to detect decompression error or compression memory out-of-sync error.
Proposal 4: To capture the following into the “Conclusion” section of the TR.

· In RAN2#98 meeting and the following UDC WI (if any), only ROHC and some of the UDC Compressed data formats as proposed in RAN2#97bis will be used, no further change should be made to the UDC compressed data formats as proposed in RAN2#97bis.

8 Reference

[1] RP-162541, “New SI proposal: Study on UL data compression in LTE”, CATT, CMCC, Qualcomm Incorporated , in 3GPP TSG RAN Meeting #74, Vienna, Austria, December 5 - 8, 2016.
[2] UDC SI TR Draft on RAN2 reflector as of 2 May 2017
[3] RFC 1951 https://tools.ietf.org/html/rfc1951
