Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-RAN WG2 Meeting #98	R2-1705314
Hangzhou, China, 15 – 19 May 2017

Agenda Item:	9.3.4
Source:	Ericsson
Title:	Comparison of different UDC algorithms
Document for:	Discussion, Decision

Introduction
In this paper different UDC compression algorithms have been compared. The intent is to capture this in the TR.
Comparison
UL ROHC compared to DEFLATE, Zlib and QC
The ROHC framework targets headers only for compression and is tailor made to compress the IP, UDP, RTP and TCP headers of internet traffic. Different profiles have been developed to exploit redundancies for a certain type of headers or header combinations, and within each profile redundancies between the same type of headers/heared combinations can be exploited fully.
The DEFLATE [2], Zlib [3] and Adaptive Packet Data Compression [4] algorithms on the other hand provides general purpose compression functionality, that target both header and payload for compression by treating these as a single chunk of data. No specialization has been made for different traffic types, which makes this type of algorithms traffic agnostic.
Since ROHC is designed to fully exploit the type of the traffic, it is expected to outperform any general purpose algorithm in scenarios where most the compressible data are a combination of internet headers supported by ROHC.
Since ROHC does not target payload for compression, a general purpose compression algorithm would on the other hand be expected to perform better in scenarios where the major part of the data (header + payload) is compressible.
Table 1 has been deduced from the various results presented in [4].

	Traffic type
	Ratio of TCP/IP headers
	UL ROHC
	DEFLATE
	Zlib
	Adaptive Packet Data Compression

	FTP data (client)
	90.8%
	73.3%
	50.5 %
	51.69 %
	54.74 %

	Video data (long period)
	58.1%
	45.1%
	73.9 %
	75.41 %
	78.44 %

	Video data (short period)
	29.1%
	21.7%
	65.1 %
	65.55 %
	62.04 %

	SIP signalling
	7.5%
	5.4%
	88.1 %
	88.25 %
	85.61 %

				 Table 1: Comparison based upon Ratio of TCP/IP Headers

ROHC is designed to fully exploit the traffic type and would need to be updated should a new type of internet header emerge.
ROHC is designed to fully exploit the traffic type and would be expected to outperform any general purpose algorithm in scenarios where the majority part of the compressible data consists of internet headers.
ROHC does not target payload for compression and would be expected to be outperformed by a general purpose algorithm in scenarios where the majority part of the data (header + payload) is compressible.
RoHC is expected to provide moderate to high compression gain for most targeted use cases where the ratio of headers compressible by RoHC is relatively high. The only exception is SIP signalling, where the ratio of compressible headers is low.

DEFLATE compared to Zlib
Zlib is as an abstraction of the DEFLATE algorithm where the raw DEFLATE compressed data is encapsulated in a wrapper by adding a few header an trailer bytes. The header and trailer bytes offer functionality not available with the raw DEFLATE algorithm, for example error detection that can be used for out-of-synch detection and means to control the compression level value to make trade-offs between speed and compression efficiency.
The Zlib header and trailer will add some extra overhead to the DEFLATE data.

Zlib is an abstraction of the DEFLATE algorithm where a header and trailer bytes are added to the raw DEFLATE data. The header and trailer bytes offer functionality not available with the raw DEFLATE algorithm, for example error detection and trade-off between speed and compression level.
Zlib adds some extra overhead to the DEFLATE protocol, as header and trailer bytes are added to the raw DEFLATE data.

Adaptive Packet Data Compression compared to DEFLATE/Zlib
The proposed solution 4 offers a variant of the table based compression scheme used in DEFLATE/Zlib. In addition to compression, the solution 4 also provides a framework for communication from the compressor to the decompressor which introduces management functionality of the compression/decompression context memory, as it is from the compressor side possible to indicate which packets should be stored in the memory. This kind of communication is not included in the DEFLATE or Zlib solutions.
Managing the context memory in the way proposed in Adaptive Packet Data Compression could be expected to give increased compression gain, as packets with no or low level of redundancy could be excluded from the context memory.
It is important to note that the communication framework and compression algorithm in Adaptive Packet Data Compression can be seen as separate entities, and that the communication framework could therefore be used with another compression algorithm such as DEFLATE.

The possibility to manage the compression context memory as proposed in Adaptive Packet Data Compression could be expected to increase compression gain as packets with no or low level of redundancy could be excluded from the buffer.
The framework to manage buffer memory by communicating from compressor to decompressor which packets should be stored in the context buffer could be used with other compression algorithms, such as DEFLATE.

Conclusion
In section 2 we made the following observations:

1. ROHC is designed to fully exploit the traffic type and would need to be updated should a new type of internet header emerge.
ROHC is designed to fully exploit the traffic type and would be expected to outperform any general purpose algorithm in scenarios where the majority part of the compressible data consists of internet headers.
ROHC does not target payload for compression and would be expected to be outperformed by a general purpose algorithm in scenarios where the majority part of the data (header + payload) is compressible.
ROHC is expected to provide moderate to high compression gain for the targeted use cases for UDC except for SIP Signalling compression where Packet headers that ROHC could target does not exist.
Zlib is an abstraction of the DEFLATE algorithm where a header and trailer bytes are added to the raw DEFLATE data. The header and trailer bytes offer functionality not available with the raw DEFLATE algorithm, for example error detection and trade-off between speed and compression level.
Zlib adds some extra overhead to the DEFLATE protocol, as header and trailer bytes are added to the raw DEFLATE data.
The possibility to manage the compression context memory as proposed in Adaptive Packet Data Compression could be expected to increase compression gain as packets with no or low level of redundancy could be excluded from the buffer.
The framework to manage buffer memory by communicating from compressor to decompressor which packets should be stored in the context buffer could be used with other compression algorithms, such as DEFLATE.
Proposal 1 To include above description along with the observation from section 2 and 3 in the technical report of this study item as proposed in the Annex.

[bookmark: _In-sequence_SDU_delivery]References
[1] 	IETF RFC 3095, "RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP and uncompressed".
[2] 	IETF RFC 1950, "ZLIB Compressed Data Format Specification version 3.3".
[3]	IETF RFC 1951, "DEFLATE Compressed Data Format Specification version 1.3".
[4]	TR 36.754 “Study on UL data compression for E-UTRA” Rel-15.

Annex for Text proposal for TR

7.3.1	Comparison of UL data compression solutions
Editor Note: in this section, comparison of these proposed solutions can be listed here.
7.3.1.1 UL ROHC compared to DEFLATE, Zlib and QC
The ROHC framework targets headers only for compression and is tailor made to compress the IP, UDP, RTP and TCP headers of internet traffic. Different profiles have been developed to exploit redundancies for a certain type of headers or header combinations, and within each profile redundancies between the same type of headers/heared combinations can be exploited fully.
The DEFLATE [2], Zlib [3] and Adaptive Packet Data Compression [4] algorithms on the other hand provides general purpose compression functionality, that target both header and payload for compression by treating these as a single chunk of data. No specialization has been made for different traffic types, which makes this type of algorithms traffic agnostic.
Since ROHC is designed to fully exploit the type of the traffic, it is expected to outperform any general purpose algorithm in scenarios where most the compressible data are a combination of internet headers supported by ROHC.
Since ROHC does not target payload for compression, a general purpose compression algorithm would on the other hand be expected to perform better in scenarios where the major part of the data (header + payload) is compressible.
Table 1 has been deduced from the various results presented in [4].

	Traffic type
	Ratio of TCP/IP headers
	UL ROHC
	DEFLATE
	Zlib
	Adaptive Packet Data Compression

	FTP data (client)
	90.8%
	73.3%
	50.5 %
	51.69 %
	54.74 %

	Video data (long period)
	58.1%
	45.1%
	73.9 %
	75.41 %
	78.44 %

	Video data (short period)
	29.1%
	21.7%
	65.1 %
	65.55 %
	62.04 %

	SIP signalling
	7.5%
	5.4%
	88.1 %
	88.25 %
	85.61 %

				 Table 1: Comparison based upon Ratio of TCP/IP Headers
Summary:
· ROHC is designed to fully exploit the traffic type and would need to be updated should a new type of internet header emerge.
· ROHC is designed to fully exploit the traffic type and would be expected to outperform any general purpose algorithm in scenarios where the majority part of the compressible data consists of internet headers.
· ROHC does not target payload for compression and would be expected to be outperformed by a general purpose algorithm in scenarios where the majority part of the data (header + payload) is compressible.
· ROHC is expected to provide moderate to high compression gain for the targeted use cases for UDC except for SIP Signalling compression where Packet headers that ROHC could target does not exist.

7.3.1.2 DEFLATE compared to Zlib
Zlib is as an abstraction of the DEFLATE algorithm where the raw DEFLATE compressed data is encapsulated in a wrapper by adding a few header an trailer bytes. The header and trailer bytes offer functionality not available with the raw DEFLATE algorithm, for example error detection that can be used for out-of-synch detection and means to control the compression level value to make trade-offs between speed and compression efficiency.
The Zlib header and trailer will add some extra overhead to the DEFLATE data.
Summary:

· Zlib is an abstraction of the DEFLATE algorithm where a header and trailer bytes are added to the raw DEFLATE data. The header and trailer bytes offer functionality not available with the raw DEFLATE algorithm, for example error detection and trade-off between speed and compression level.
· Zlib adds some extra overhead to the DEFLATE protocol, as header and trailer bytes are added to the raw DEFLATE data.

 7.3.1.3 Adaptive Packet Data Compression compared to DEFLATE/Zlib
The proposed Adaptive Packet Data Compression offers a variant of the table based compression scheme used in DEFLATE/Zlib. In addition to compression, the solution 4 also provides a framework for communication from the compressor to the decompressor which introduces management functionality of the compression/decompression context memory, as it is from the compressor side possible to indicate which packets should be stored in the memory. This kind of communication is not included in the DEFLATE or Zlib solutions.
Managing the context memory in the way proposed in Adaptive Packet Data Compression could be expected to give increased compression gain, as packets with no or low level of redundancy could be excluded from the context memory.
[bookmark: _GoBack]It is important to note that the communication framework and compression algorithm in Adaptive Packet Data Compression can be seen as separate entities, and that the communication framework could therefore be used with another compression algorithm such as DEFLATE.
Summary:
· The possibility to manage the compression context memory as proposed in Adaptive Packet Data Compression could be expected to increase compression gain as packets with no or low level of redundancy could be excluded from the buffer.
· The framework to manage buffer memory by communicating from compressor to decompressor which packets should be stored in the context buffer could be used with other compression algorithms, such as DEFLATE.

The results from UDC solutions 2 to 4 show a similar trend in terms of the compression efficiency. Wherein, about 40% to 50% compression efficiency is shown for UL FTP traffic, over 80% of compression efficiency is shown for UL SIP signalling and about 60% to 75% compression efficiency is shown for UL video traffic. Similarly, over 60% of compression efficiency can be obtained with UL web surfing data.
Simulation results are shown considering 8K Bytes and 32K Bytes buffer sizes. The buffer size has not shown a significant factor to the simulation results in terms of compression efficiency, although the performance with 32K Bytes buffer shows a slight increase of gain compared to that of 8K Bytes buffer case in UDC solution 2 and solution 3. No compression efficiency variation due to buffer size was observed in UDC solution 4. The following remarks can be made based on the simulations:
· A significant compression performance can be achieved with UDC solutions in UL for all types of traffic including FTP, SIP, video and web surfing in case 1 and case 2 type traffic scenarios.
	5/5	
