3GPP TSG RAN WG2 #98
 R2-1704721
Hangzhou, China, 15 – 19 May, 2017
Agenda Item:
8.22 Shortened TTI and processing time for LTE
Source:
Ericsson
Title:
DRX impact of sTTI
Document for:
Discussion and Decision

1 Introduction
In this contribution the use of DRX together with sTTI is discussed.
2 Discussion
2.1 History

In RAN2#97bis the following agreements were made for DRX:

Agreements on DRX

1. The unit for drx-RetransmissionTimer, drx-ULRetransmissionTimer counting is same as the HARQ RTT time expiry that starts the retransmission time, i.e. depending on the TTI length of the TB that is under retransmission.
2. Legacy DRX Cycle and drxShortCycleTimer are in number of subframes regardless of which TTI length is used.
3. Legacy onDurationTimer and drx-InactivityTimer counts number of PDCCH-subframes regardless of which TTI length is used.
4. Whether additional enhancements for sPDCCH monitoring are needed is FFS. Whether additional timers for sPDCCH enhancements is need is FFS.
The discussion in RAN2#97bis was regarding the units of different DRX timers, but there was no discussion about how a DRX solution for sTTI should work. The HARQ RTT timers are hardcoded in 36.321 and new values can be defined for short TTI. However, the other timers are configurable in RRC and that makes it a bit different.
One timer cannot be configured with two different values in RRC signalling. If the same timers are used both when the UE is scheduled with sTTI and with legacy TTI, an RRC reconfiguration is needed at each switch of TTI for the UE to get the new DRX values. As the switch between sTTI and legacy TTI should be dynamic according to agreements in RAN1, that is not a possible solution.
If an RRC reconfiguration does not take place at TTI switch it is not clear how the DRX for sTTI would be configured. E.g. in the agreement it says that the timers drx-RetransmissionTimer and drx-ULRetransmissionTimer should depend on the TTI length of the TB that is under retransmission, but it is not possible to configure the same timer with different values. It can be assumed that the same values for the timers are not desired for both sTTI and legacy TTI. As an RRC reconfiguration cannot be done at each TTI switch, an alternative would be to introduce new timers for sDRX. With new timers the UE can be configured with DRX timers for both legacy TTI and sTTI in the same RRC message, e.g. when sTTI is configured.
As the agreements made for DRX in RAN2#97bis are a bit unclear, they need to be discussed again. Also, the FFSes were captured in order to discuss DRX further in RAN2#98.

2.2 Overview of sDRX
As new timers anyhow seem to be needed, it is proposed to keep the legacy DRX as it is, i.e. it still controls PDCCH monitoring for legacy DCI. The new timers can control the monitoring for sDCI, which can be sent on either PDCCH or sPDCCH. The legacy DRX can still work as before and the network can on top of that also configure an sDRX pattern for sTTI. The timers are sent to the UE in an RRC message. The two DRX patterns can run in parallel and independent of each other, if both are configured. That means that each of the DRX patterns follow their own timers and rule and it is up to the network to make a good configuration.
Proposal 1: Make no changes to legacy DRX.
Proposal 2: Use new timers to define sDRX, which is independent of DRX.
2.3 Timers
A question is if all DRX timer should be duplicated for sDRX or only a subset of the timers. The following timers and offset exist today for DRX:
onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, longDRX-CycleStartOffset, shortDRX-Cycle, drxShortCycleTimer, drx-ULRetransmissionTimer.
There are only seven different timers. Duplicating all of them has the advantage that the same behavior can be used for both DRX and sDRX which may simplify the implementation both in the specification and in the product. It is therefore proposed to duplicate all existing timers for sDRX.
Proposal 3: Duplicate the timers onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, longDRX-CycleStartOffset, shortDRX-Cycle, drxShortCycleTimer, drx-ULRetransmissionTimer for a short TTI sDRX.
Regarding the granularity of the timers the discussion that took place in RAN2#97bis can be used as input. Based on these discussions there seems to be support for having the timers drx-RetransmissionTimer and drx-ULRetransmissionTimer with a TTI level granularity.
As sDRX controls the sDCI monitoring which can be sent in every short TTI the timer sOnDurationTimer seems to be better suited to have TTI level granularity, so that the UE can sleep during a number of sTTI’s. The sDRXInactivityTimer could have either TTI level or subframe level granularity. It is probably most likely the wanted behavior that the UE stays awake at least one subframe if it has recently been scheduled, but TTI level granularity can be used to align to a subframe border.
The current shortDRX-Cycle is currently defined in number of subframes, and it is not likely that an sShortDRX-Cycle would need lower granularity than a subframe. However, the lowest value would need to be one subframe compared to the current lowest value of 2 subframes.

The drxShortCycleTimer is defined as number of shortDRXCycle’s and the new parameter can also indicate the number of sShortDRXCycle’s if the short DRX cycle is configured.
The longDRX-CycleStartOffset defines an offset towards the SFN when the long DRX cycle should start. The subframe level granularity should be kept also for sDRX.

Proposal 4: The new timers drx-sRetransmissionTimer and drx-sULRetransmissionTimer have TTI level granularity.
Proposal 5: sOnDurationTimer has a TTI level granularity.

Proposal 6: sDRXInactivityTimer has a TTI level granularity.
Proposal 7: The new timer sShortDRX-Cycle has subframe level granularity.
Proposal 8: The sShortCycleTimer counts the number of sShortDRX-Cycle’s.
Proposal 9. sLongDRX-CycleStartOffset has subframe level granularity.
With these proposals the DRX and sDRX could look like this:

[image: image2.png]L) L) L

When the UE is in active time of sDRX the UE monitors for possible sDCIs. As the sDCI can be sent on either sPDCCH or PDCCH, the UE needs to monitor both channels. When the UE is scheduled on sPDCCH the timers for sDRX are started in exactly the same way as for legacy DRX. When the UE is inactive of sDRX it doesn’t monitor for possible sDCIs.

When the UE is in active time of DRX the UE monitors PDCCH for DCI like in legacy. There are no changes to the legacy DRX. If the networks would like to configure DRX for a UE configured with sTTI, the network needs to configure both DRX and sDRX to utilize monitoring of both PDCCH and sPDCCH.
2.4 Deactivation of sDRX
Having both DRX and sDRX leads to quite much active time for the UE, but still with some possibility for sleep. However, a big advantage of having them defined separately is that one of them can be deactivated. If the UE is configured with short TTI but is scheduled with legacy TTI for a long period of time, e.g. due to coverage reasons, it may be beneficial to switch off the monitoring for sDCI completely for a period of time. That could be done by defining a new MAC CE for deactivation of sDRX. If the network would like to schedule the UE with sTTI again, another MAC CE could be defined for activation of sDRX.
The delay from the time when the UE receives the MAC CE until the UE has activated/deactivated sDRX can be assumed to be around two subframes, which seems reasonable considering that the UE has been scheduled with legacy TTI for a period of time. Actually it is more beneficial from a latency pont of view to deactivate sDRX and activate it again by a MAC CE, than to have long DRX cycles defined as the inactive time would in such a case probably be larger than a couple of subframes.
Proposal 10: Introduce MAC CEs for activation and deactivation of sDRX.

2.5 Purpose of sDRX
An alternative to having an sDRX would be to update legacy DRX and state that the UE should monitor both PDCCH and sPDCCH during the active time. That leads to a lot of active time for the UE and no possibility to switch any monitoring off. The solution above provides an opportunity for some battery savings when the UE is mainly scheduled with sTTI, but mainly it provides high battery savings when the UE is scheduled with legacy TTI for a period of time as the monitoring of sDCI can then be completely switched off for a period of time. The latency for switching the monitoring of sDCI on again is only around two subframes, which is also better compared to existing DRX mechanisms.
Another alternative would be to keep legacy DRX as it is, i.e. only related to PDCCH monitoring, and not configure DRX at all together with sTTI. Then of course no saving of battery can be achieved.
3 Summary
RAN2 is kindly asked to discuss the following proposals:
Proposal 1: Make no changes to legacy DRX.
Proposal 2: Use new timers to define sDRX, which is independent of DRX.
Proposal 3: Duplicate the timers onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, longDRX-CycleStartOffset, shortDRX-Cycle, drxShortCycleTimer, drx-ULRetransmissionTimer for a short TTI sDRX.
Proposal 4: The new timers drx-sRetransmissionTimer and drx-sULRetransmissionTimer have TTI level granularity.
Proposal 5: sOnDurationTimer has a TTI level granularity.

Proposal 6: sDRXInactivityTimer has a TTI level granularity.
Proposal 7: The new timer sShortDRX-Cycle has subframe level granularity.
Proposal 8: The sShortCycleTimer counts the number of sShortDRX-Cycle’s.
Proposal 9. sLongDRX-CycleStartOffset has subframe level granularity.
Proposal 10: Introduce MAC CEs for activation and deactivation of sDRX.
4 References

[1] RP-161299, Work Item on shortened TTI and processing time for LTE
[2] R1-1703579, LS on sPDCCH monitoring in sTTI
5 Appendix

The implementation of the proposals above could be implemented something like below in the specifications.
36.331:
MAC-MainConfig…

[[
drx-Config-r15

DRX-Config-r15

OPTIONAL

-- Need ON

]]

}

DRX-Config-r15 ::=

CHOICE {

release

NULL,

setup

SEQUENCE {

sOnDurationTimer-r15

ENUMERATED {

ptti1, ptti2, ptti3, ptti4, ptti5, ptti6, ptti7},

sDrx-InactivityTimer-r15

ENUMERATED {

ptti1, ptti2, ptti3, ptti4, ptti5, ptti6, ptti7},

sDrx-RetransmissionTimer-r15

ENUMERATED {

ptti1, ptti2, ptti3, ptti4, ptti5, ptti6, ptti7,

ptti8},

sDrx-ULRetransmissionTimer-r15

ENUMERATED {

ptti1, ptti2, ptti3, ptti4, ptti5, ptti6, ptti7,

ptti8},

sLongDRX-CycleStartOffset-r15

CHOICE {

sf10

INTEGER(0..9),

sf20

INTEGER(0..19),

sf32

INTEGER(0..31),

sf40

INTEGER(0..39),

sf64

INTEGER(0..63),

sf80

INTEGER(0..79),

sf128

INTEGER(0..127),

sf160

INTEGER(0..159),

sf256

INTEGER(0..255),

sf320

INTEGER(0..319),

sf512

INTEGER(0..511),

sf640

INTEGER(0..639),

sf1024

INTEGER(0..1023),

sf1280

INTEGER(0..1279),

sf2048

INTEGER(0..2047),

sf2560

INTEGER(0..2559)

},

sShortDRX-r15

SEQUENCE {

sShortDRX-Cycle-r15

ENUMERATED
{

ptti1, ptti2, ptti3, ptti4, ptti5, ptti6,

ptti7, ptti8},

sDrxShortCycleTimer-r15

INTEGER (1..16)

}

OPTIONAL

-- Need OR

}
}

36.321:
For 36.321 the text in chapter 5.7 could be duplicated to a new chapter for sTTI, but with the new timer names instead. Also the sDrx-ULRetransmissionTimer will work a bit differently due to the asynchronous UL HARQ.
4

[image: image1]