
3GPP TSG-RAN WG2#97bis
R2-1703632
Spokane, USA, April 3rd – 7th, 2017
Agenda item:
10.3.3.2
Source:
Sequans Communications
Title:
PDCP operation for NR
Document for:
Discussion and Decision
1. Introduction
During NR study item, the overall L2 protocol architecture was agreed and captured in the technical report [1]. The NR L2 uses LTE L2 as a baseline, and consists of MAC, RLC and PDCP sub-layers, as well as a new AS sublayer on top of PDCP for connection to the NGC (support of new QoS framework).
Regarding RLC, 2 main changes were decided compared to LTE:

· Out-of-order delivery (OOD) of complete PDCP PDUs after RLC SDU reassembly (PDCP reordering is always enabled if in order delivery to layers above PDCP is required)
· No support of concatenation of RLC SDUs, i.e. a RLC PDU basically contains 1 RLC SDU (or segment of 1 RLC SDU).

Moreover, the technical report captured the following:

· It is FFS whether Reordering of complete PDCP PDUs for a DRB can be disabled via RRC signalling, which only affects PDCP operation and could be discussed in the stage-3 work.
In this contribution, we give our view on these topics and discuss the impact on PDCP.
2. Discussion

For reference, LTE PDCP operation is summarized in Annex A.

2.1. OOD to upper layers
Overview

In LTE, only in-order-delivery (IOD) bearers are supported. Moreover, IOD is already enforced between RLC and PDCP. It is only in the case of dual connectivity (where PDCP PDUs are received from 2 RLC entities) or during HO (when previously sent PDCP PDUs are retransmitted) that PDCP may receive out-of-order PDUs and have to reorder them.

In NR, it was agreed to no longer inforce IOD between RLC and PDCP. As soon as a complete RLC PDU is received, the RLC SDU can be extracted and sent to PDCP. This enables to smooth operation like deciphering (avoiding burst deciphering). Allowing further OOD of the PDCP SDUs seems attractive as it should not require a significant additional specification effort.
Use cases example

We believe that “OOD bearer” (i.e. a bearer for which IOD is not enforced) can be useful for specific traffic use cases.
For instance, real time audio streaming (VoIP) would benefit from such bearer, since reordering will be anyway performed in the application jitter buffer. Real time video streaming (e.g. for game streaming) also needs very low latency, but in addition ideally null frame error rate. This is because such protocol uses delta frame encoding (compared to previous frame), hence a lost frame has a very bad impact as it breaks the stream and needs to be recovered (thanks to ARQ at application level). The very low frame error rate is achieved by network coding, adding N FEC segments to an initial frame of M segments, which enable to reconstruct up to N missing packets. For this kind of protocol, OOD is highly beneficial as it enables to reduce the latency observed at application level, as shown in Figure 1. As it can be seen, even if some packets are delayed due to retransmissions (could be by HARQ, or ARQ), the end to end latency is not impacted. Basically, for a video frame, M+N segments are transmitted, and the first M segments received among the set of {M+N} segments are enough to decode the frame (whichever are received first). So RLC UM or even RLC AM may be used (depending of RLC AM ARQ RTT, but it could be quicker than application level RTT).

[image: image1.emf]Frame segment

FEC segment

OOD (e.g., HARQ retrans)

Frame 1 decoded Frame 2 decoded Frame 3 decoded

Figure 1
Such kind of bearer could also be used for SRB. For instance, it could be beneficial to send measurement reports. It would ensure that RRC always benefits from the most up to date available measurement report which was successfully transmitted, while not compromising the reliability (using RLC AM).

For OOD bearer, it is up to upper layers to handle/identify the OOD packets, by including the appropriate sequence numbering (e.g. in RRC in case of SRB, or using RTP like protocol for streaming applications).
Proposal 1: It should be possible to disable PDCP PDUs reordering for a DRB (allow OOD to upper layers)

Implementation

Even if OOD is allowed, it is desirable to eliminate duplicate packets. It is known that out-of-order packets can happen (due to different routes), and they should be correctly handled by most applications (even if there could be side effect, e.g. for TCP there is a direct impact on throughput). On the other hand, duplicated packets are far less common, are not considered as a “normal behaviour” and should be avoided.
It is proposed that the same PDCP receive window mechanism used when IOD is configured is also used when OOD is configured. The only difference should be the following. Instead of storing a PDCP SDU in the PDCP reordering buffer (waiting for previous PDCP SDUs), it can be delivered to upper layers immediately; however PDCP should keep the information that the PDCP PDU was already received and handled, in order to avoid delivering duplicate to upper layers.
Proposal 2: When OOD to upper layers is performed, PDCP no longer needs to store the delivered PDCP SDU, but just the information that the PDCP SDU was delivered, which is used for duplicate detection and removal

2.2. IOD to upper layers – Reordering operation

In LTE, reordering in PDCP is only needed for HO retransmission and during dual connectivity, which is used only with RLC AM (i.e. without RLC PDU loss). This is because reordering is first performed in RLC, and IOD is ensured between RLC and PDCP.

For IOD bearer, the PDCP reordering operation defined in LTE for dual connectivity can be used as a baseline. However, in NR, it will be used in all cases, including single connectivity, or RLC UM. Indeed, we believe that IOD bearer needs to supported as a baseline, whichever the underlying RLC mode (AM our UM) or connectivity scheme (single or multiple). In our view, it is important that the decision to move the reordering to PDCP does not result in increased latency compared to the LTE baseline.
In LTE single connectivity, the reordering is based on RLC SN. In RLC AM case, there is no gap in the sequence (thanks to ARQ), so there is no additional delay (on top of ARQ). In RLC UM, there are only sporadic gaps in case of HARQ failure, and the additional delay is limited to waiting the sporadic lost RLC PDUs (each gap resulting in a delay of t-Reordering).

In NR, the reordering would be based on PDCP SN. So, it is important to consider the gaps in the PDCP PDUs sequence.
Generally, it is desirable that PDCP SN gaps are allowed at the transmitter (due to e.g. AQM, flow control or SDU discard). For LTE in single connectivity, this is transparent as the reordering is in RLC, and is commonly used. However, as soon as reordering is in PDCP, this adds reordering delay, the reordering function waiting for PDCP PDUs which will never arrive. In LTE, it was a reason to quickly disable the PDCP reordering functionality when switching back in single connectivity, whereas during dual connectivity operation, AQM on NW side or SDU discard on UE side could be deactivated.
With RLC UM, obviously in case of HARQ failure, there will be at least one gap. For NR, it was also agreed to support dual connectivity with RLC UM. Assuming for instance PDCP PDUs are alternatively routed to both legs, and given that a TB may include hundreds of PDCP PDUs, a single HARQ failure may result in hundreds of gaps in the PDCP PDUs sequence.
Whenever a gap is created in the PDCP PDUs sequence, the missing PDUs will be waited for by the reordering function, which will create additional reordering delay. With legacy t-Reordering algorithm, each gap would actually incurs a delay equal to the value of t-Reordering timer, which could typically be set to several tens of ms. In the above case where hundreds of gaps are created by a single HARQ failure, it can clearly be seen that this solution does not work. And even when RLC AM is used, additional reordering delay would be introduced compared to LTE.
We think that using lower layers (LL) assistance information and improving the t-Reordering timer algorithm can help to optimize the reordering latency, and actually yields better performance than current LTE operation.
LL reordering status assistance information

In NR, each LL leg connected to PDCP can deliver PDCP PDUs out-of-order. However, each LL leg actually has more information that can be useful for reordering purpose in PDCP. Indeed, generally each link will use a RLC entity with a receive state variable indicating which is the earlier missing RLC PDU considered for reordering (i.e. waited for retransmission on that leg, either with HARQ or ARQ).

From such LL information for a given leg i, it can easily be derived which is the earliest PDCP PDU that can still be expected from that leg. It can be defined through a state variable VR(RLi) (in terms of SN or COUNT value). That is to say, PDCP PDUs earlier than VR(RLi) are no longer expected from that leg.

Assuming VR(RLi) is available from all connected legs, the PDCP entity can know that no PDCP PDUs earlier that the earliest VR(RLj) (across all legs) needs to be waited for. This can expedite the reordering process in PDCP.

This is particularly useful for RLC UM, where HARQ failure will create gaps. With single connectivity, T-reordering timer in PDCP might be used to cover the time to wait for HARQ reordering. However for dual connectivity, PDCP does not know whether gaps are related to HARQ reordering or just due to backhaul delay between both legs. The T-reordering timer in PDCP needs to be set to a very conservative value, covering backhaul delay and HARQ reordering.

If each leg runs its own timer (which can be set in an optimal way according to the HARQ policy of the eNB), PDCP can know whether to wait for missing PDUs or not. As an example, assuming an HARQ reordering delay of 10ms, and a backhaul delay of 20ms, T-reordering timer in PDCP should be set to 30ms. With legacy algorithm, each gap created by an HARQ failure would add a delay of 30ms. Whereas only 10ms delay would be added by using such assistance information.

It is also useful for other cases even in RLC AM as it enables to make PDCP SN gaps generated as the transmitter transparent (no additional reordering delays).

Hence we make the following proposal:

Proposal 3: PDCP should use reordering information from LL to expedite reordering processing

At the UE side, i.e. for DL, PDCP and LL (RLC) are collocated hence this can be easily implemented. It is noted that PDCP transmitter at the UE side already uses implicit information from LL, in a way left to UE implementation, as indicated below in 36.321 (it can be done for bearers mapped on RLC AM by looking at VT(A) on each leg)
 NOTE:
Associating more than half of the PDCP SN space of contiguous PDCP SDUs with PDCP SNs, when e.g., the PDCP SDUs are discarded or transmitted without acknowledgement, may cause HFN desynchronization problem. How to prevent HFN desynchronization problem is left up to UE implementation.

It could be considered that using LL reordering information is left to UE implementation. However we believe that it needs to be specified to ensure reliable and verifiable UE performance. For this purpose, we think the PDCP reordering algorithm could include the use of VR(RLi), for each LL leg connected to PDCP.
For RLC AM and UM, how VR(RLi) is set may not need to be specified, as it is understood that this information can be retrieved in a non-ambiguous way (only the definition is important). This includes both NR and LTE (i.e. it is also applicable for LTE-NR tight interworking). For other types of legs, e.g. Wifi based LL, this information may also be available by different means. Obviously, it is only when this information is available from all the configured LL legs that it can be used by PDCP (otherwise, PDCP should always assume that a missing PDU may arrive from the leg from which the assistance information is not available).
For RLC AM and UM, the per-leg reordering could also be specified within PDCP. In that case, PDCP may use the t-Reordering max value specified for each configured LL leg. A drawback is that PDCP SN gaps would become visible again, yielding reordering delays.
At the NW side, i.e. for UL, PDCP and RLC may not be collocated, in case of dual connectivity or CU-DU split. It is similarly beneficial to add such information in the Xn interface and/or new CU-DU interface; however this would be up to RAN3 to specify.

T-reordering timer operation

In legacy implementation, reordering is specified by using a single T-reordering timer. This timer is started as soon as missing PDUs are detected (the received PDU is not the next in-sequence, hence it created a gap in the sequence) (note that a missing PDU received later may split an initial gap in 2 sub-gaps, we do not consider this as “creating a gap in the sequence”).
The missing PDUs corresponding to this gap are then waited for while T-reordering is running. If all are received (gap filled), the timer is stopped and reset. If at least some are not received, the timer will expire and missing PDUs are no longer waited for. In both cases, it may happen that further PDUs were received while T-reordering was running, creating further gaps in the sequence. In that case, the timer will then be restarted just as if the gaps were just created, without consideration of when the PDUs actually created these gaps. This is further detailed in Annex B.
Obviously, this is not efficient and leads to additional reordering delay. Whenever new gaps in the sequence are created, the corresponding missing PDUs should not be waited for during more than T-reordering delay.

This can be easily specified by considering starting a new T-reordering timer whenever a gap is created (when receiving highest SN PDUs). In practical implementation, only one single reordering timer is needed, since it is enough to store a timestamp for each newly created gap. When the timer needs to be restarted, the duration can just be set as T-reordering delay - (current timestamp - gap timestamp), which ensure that the missing PDUs are just waited for as long as it is required, with no extra.

It seems to us that the specification impact by starting several timers is low, actually possibly lower than with existing mechanism. The complexity impact is low as well, since only timestamps corresponding to stored PDUs need to be stored.

Proposal 4: PDCP reordering uses a t-Reordering timer

Proposal 5: Multiple instances of t-Reordering timer can be started, such as missing PDUs are never waited for more than the configured t-Reordering duration.

In our view, the complexity is very much affordable, as explained above. Otherwise, it is also possible to reduce the number of t-Reordering timers depending of the expected number of gaps to be handled in parallel (reducing the gap timestamps to be stored). For instance, using N t-Reordering timers enable to handle in an optimal way (i.e. without extra reordering delay) up to N gaps in parallel. Additional gaps will lead to waiting for the maximum value of the t-Reordering timer.

The overall reordering operation with above proposed improvements is further detailed in Annex C.
2.3. Receive/transmit window operation
The reordering window operation defined in LTE assumes that the PDCP PDUs received outside of the reordering (receiving) window are old PDUs, and are discarded. This behavior was initially introduced for handling handover use case, in which indeed earlier PDUs may be retransmitted and should be considered as duplicate.

It was kept for dual connectivity, though in LTE, only RLC AM is supported. In such case, the PDCP transmitter is anyway assumed to not transmit more than half the PDCP SN space in flight, which it can ensure thanks to RLC AM feedback (e.g., VT(A) knowledge) . The PDCP transmitter has implicit information on what is its “PDCP VT(A)” value, corresponding to the cumulative ACK value from the PDCP receiver. As long as the PDCP transmitter refrains from sending more than half of the PDCP SN space in flight, it is not possible to actually receive PDCP PDUs outside of the reordering window.
In NR, since the reordering will be used with RLC UM, including in dual connectivity use cases, special care need to be taken. Indeed, without feedback, the PDCP transmitter cannot ensure there is no less than half the PDCP SN space in flight. This can result in HFN desynchronization at PDCP receiver side.

A possible solution could be to use the full COUNT value as PDCP SN, however this might incur too much overhead, knowing that we already have the RLC header overhead for each PDCP PDU (compared to LTE).

Another solution would be to define a transmit window at PDCP, which could be used especially when RLC UM is used. Somehow in existing specification, it is implicitly defined by the NOTE quoted above. It might be better to explicitly specify such window. When RLC AM is used, the lower edge is advanced can be advanced through implicit indication from RLC (e.g., VT(A) values). In addition, a cumulative ACK report from PDCP receiver to PDCP transmitter could be specified in order to move the transmission window lower edge. This can be beneficial when RLC UM is used, or when RLC AM is used but PDCP PDU discard is required for some reason. Such report may be sent automatically from the PDCP receiver depending on window occupancy (window based), or following a polling mechanism from the PDCP transmitter.

Proposal 6: For NR, it should be discussed whether a cumulative ACK report is required in order to move the PDCP transmission window and avoid HFN desynchronization issues.
3. Conclusion
In this contribution, we have the overall PDCP reordering functionality for NR, and made the following proposals:
Proposal 1: It should be possible to disable PDCP PDUs reordering for a DRB (allow OOD to upper layers)
Proposal 2: When OOD to upper layers is performed, PDCP no longer needs to store the delivered PDCP SDU, but just the information that the PDCP SDU was delivered, which is used for duplicate detection and removal
Proposal 3: PDCP should use reordering information from LL to expedite reordering processing
Proposal 4: PDCP reordering uses a t-Reordering timer
Proposal 5: Multiple instances of t-Reordering timer can be started, such as missing PDUs are never waited for more than the configured t-Reordering duration.
Proposal 6: For NR, it should be discussed whether a cumulative ACK report is required in order to move the PDCP transmission window and avoid HFN desynchronization issues.
References

[1] 3GPP TR 38.804 V1.0.0
Annex A – LTE PDCP reordering window operation
In LTE, PDCP reordering window operation is based on the following variables:

c)
Next_PDCP_RX_SN

The variable Next_PDCP_RX_SN indicates the next expected PDCP SN by the receiver for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_RX_SN to 0.

d)
RX_HFN

The variable RX_HFN indicates the HFN value for the generation of the COUNT value used for the received PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set RX_HFN to 0.

e) Last_Submitted_PDCP_RX_SN

For PDCP entities for DRBs mapped on RLC AM the variable Last_Submitted_PDCP_RX_SN indicates the SN of the last PDCP SDU delivered to the upper layers. At establishment of the PDCP entity, the UE shall set Last_Submitted_PDCP_RX_SN to Maximum_PDCP_SN.
f) Reordering_PDCP_RX_COUNT
This variable is used only when the reordering function is used. This variable holds the value of the COUNT following the COUNT value associated with the PDCP PDU which triggered t-Reordering.
And on the following timer:

b) t-Reordering
The duration of the timer is configured by upper layers [3]. This timer is used to detect loss of PDCP PDUs as specified in the subclause 5.1.2.1.4. If t-Reordering is running, t-Reordering shall not be started additionally, i.e. only one t-Reordering per PDCP entity is running at a given time.

PDCP receiver is handling OOD of PDCP PDUs from multiple legs (in case of dual connectivity), or from retransmission of previous PDUs (in case of handover). During normal operation in single connectivity, there is no reordering as PDCP PDUs are received in order from RLC (even if there may be some gaps in PDCP PDU sequence).

We detail the reordering performed in case of dual connectivity. The state variables define a reordering window (which could also be called a receiving window) as represented in the following figure.

The variable Last_Submitted_PDCP_RX_SN+1 represents the lower edge (LE) of the “reordering (receiving) window”, i.e. the first missing PDU which is waited for from LL. Previous missing PDUs are no longer waited for from LL, and were already delivered to UL. The setting of Last_Submitted_PDCP_RX_SN use a standard T-reordering based mechanism which works as follows:

· Initial state is Last_Submitted_PDCP_RX_SN = MaxSN, Next_PDCP_RX_SN = 0.

· If new PDUs are received in receiving window:

· Last_Submitted_PDCP_RX_SN, Next_PDCP_RX_SN are updated.

· If T-reordering is running

· If the PDCP SDU with Reordering_PDCP_RX_COUNT – 1 was delivered to UL:
· The timer is stopped and reset

· If T-reordering is not running (including when stopped above)

· If there is at least one stored PDCP SDU, the timer t-Reordering is started, and Reordering_PDCP_RX_COUNT to the COUNT value associated to RX_HFN and Next_PDCP_RX_SN.

· If new PDUs are received outside of the receiving window: they are considered late PDUs, and are discarded

· If t-Reordering expires

· Reordering_PDCP_RX_COUNT is updated to the next missing PDU with SN >= Reordering_PDCP_RX_COUNT (missing PDCP SDUs with COUNT < Reordering_PDCP_RX_COUNT are no longer waited for), previous PDUs are delivered to UL in ascending COUNT order
· If there is at least one stored PDCP SDU, the timer t-Reordering is started, and and Reordering_PDCP_RX_COUNT to the COUNT value associated to RX_HFN and Next_PDCP_RX_SN.

[image: image2.emf]SNs

LastSub

Reordering (receiving) Window

Next

PDCP PDUs already handled, PDCP SDUs provided to upper layers

PDCP SDUs stored

Reord LastSub+1+WS

Figure 2
Annex B – LTE T-reordering timer operation
Considering a flow of incoming PDUs, identified by their sequence number, the reordering functionality maintains the following sequence number variables:

· R: corresponds to the SN of the earliest PDU considered for reordering. Earlier PDUs are no longer considered for re-ordering, i.e. they are already sent to the following block (when used to provide in-order delivery) or considered in status report (when used for ARQ). Used as the lower edge of the reordering window.

· H: corresponds to the SN of the highest received PDU. Used as the higher edge of the reordering window.

· X: corresponds to the SN of the “reordering PDU”, i.e. the PDU which triggered/which is associated with the t-Reordering timer.

As usual all arithmetic operations on SNs are affected by the modulus on SN space size, which is not detailed here for simplicity. Moreover, the actual variables can equivalently be R-1, H+1 or X+1 depending of the implementation in the specification.

The Figure 1 gives an illustration of a possible situation at a given time t. The PDUs in blue are no longer considered for reordering (e.g., already sent to upper layers). The PDUs within the reordering window (in light red, and yellow) are considered for reordering, i.e., the missing PDUs in between are waited for.

[image: image3.emf]SNs

X

H

R

Reordering Window

Figure 1
The timer t-Reordering is used to detect the loss of PDUs and avoid reordering window stalling. Typically its value is configured by RRC. In the following we note its value “Treordering” (without dash). It needs to cover the worst reordering delay introduced by lower layers. When a PDU is received with a sequence number N different from R, the missing PDUs R, …, N-1 are supposed to arrive within Treordering from reception of PDU N (at instant TN). Hence these missing PDUs only need to be waited for during that time (up to instant TN + Treordering).

Legacy implementation

While PDUs are received in sequence, R=H+1, the reordering window is empty and no delay is introduced. As soon as a PDU with SN N >R is received, H is set to N, R does not change. The reordering window becomes non-empty (R<H+1) and the timer t-Reordering is started and is associated with the reordering PDU X=H. If t-Reordering timer expires (lost PDU), any remaining missing PDUs before X is no longer waited for, and the reordering window lower edge R is advanced to the first missing PDUs>X. The PDU X, as well as earlier PDUs which were blocked in the reordering window are no longer considered for reordering (and can e.g. be delivered to upper layers). As expected the maximum introduced delay is t-Reordering from the reception of PDU X.

Whenever t-Reordering is stopped and reset (because missing PDUs up to X were received), or expires, the reordering window lower edge R is advanced to the first missing PDUs>X. Then, if R < H+1 (reordering window is still not empty, because further PDUs were received increasing H and creating other gaps in the received PDUs), t-Reordering is started and is associated with X = H. However in that case, the PDU with SN H could have been received  ms before, which introduces an additional delay of  ms to the expected maximum delay.

This is described in Figure 2. At T1, PDU H1 is received, which starts the timer t-Reordering associated to X1 = H1. At TA, before t-Reordering expiry, the green PDU A is received. The timer t-Reordering is stopped, the reordering window lower edge is advanced from R1 to R2, PDUs up to R2 can be delivered in sequence. At this point, since R2 < H2+1, the timer t-Reordering is started again and is associated to X2 = H2. As it can be seen, the PDU X2 was actually received at T2, i.e.  ms before TA. In this scenario, assuming the PDU R2 is lost, the PDUs up to X2 are blocked till :

TA + Treordering = T2 + Treordering ms,

whereas they could (should) have been delivered at T2 + Treordering.

[image: image4.emf]C

A

SNs

Time T

D

ms

T-reordering

Timer

R

1

R

2

(lost)

T-reordering

Timer

T

A

R

3

B

X

1

X

2

T

1

H

1

H

2

D

ms

T

B

+ Treordering

T

2

T

B

T

2

+ Treordering

T

A

+ Treordering

Figure 2
Annex C – NR PDCP reordering window operation (proposal)
With proposed improvements, the following overall mechanism could be specified for the receiver reordering functionality.

The following state variables are used:

a) VR(R) – Receive state variable

This state variable holds the value of the SN which indicates the first missing PDU which is still waited for from lower layers (LL).. It is initially set to 0. It serves as the lower edge of the receiving window.
b) VR(MR) – Maximum acceptable receive state variable

This state variable equals VR(R) + AM_Window_Size, and it holds the value of the SN of the first PDU that is beyond the receiving window. It serves as the higher edge of the receiving window.

c) VR(Xi) – t-Reordering state variable i

This state variable holds the value of the SN following the SN of the PDCP PDU which triggered t-Reordering. Multiple instances are possible.

d) VR(H) – Highest received state variable

This state variable holds the value of the SN following the SN of the PDCP PDU with the highest SN among received PDCP PDUs. It is initially set to 0.

e) VR(RLi) – Receive state variable for leg i

This state variable holds the SN corresponding to the latest PDCP PDU no longer considered for reordering for leg i, based on lower layers information. This means PDCP PDUs with earlier SN are no longer expected from leg i. The setting of this variable is not detailed.
This assumes that the PDCP SN range is extended to cover HFN, as proposed by some companies (i.e. there is no HFN, COUNT is used as PDCP SN). If the concept of COUNT is kept (HFN as MSBs, PDCP SN as LSBs), then a variable RX_HFN is needed (as in legacy LTE), and it is preferred to consider that the following variables are based on COUNT:

c) VR(Xi) – t-Reordering state variable i

This state variable holds the value of the COUNT following the COUNT value associated with the PDCP PDU which triggered t-Reordering. Multiple instances are possible.

e) VR(RLi) – Receive state variable for leg i

This state variable holds the COUNT corresponding to the latest PDCP PDU no longer considered for reordering for leg i, based on lower layers information. This means PDCP PDUs with earlier COUNT are no longer expected from leg i. The setting of this variable is not detailed.

The overall procedure is described below. For simplicity, it is described assuming no HFN is used, but the extension when HFN is used is straightforward. The description also assumes that all arithmetic operations are affected by modulus over the SN range. The modulus reference is VR(R) (similar as RLC AM operation described in 36.322).
· Initial state is VR(R) = VR(H) = 0.

· If a new PDU with SN N is received in receiving window:

· If N already stored (IOD case) or marked as delivered (OOD case)

· Discard the PDU

· Else

· Retrieve the SDU

· Store the SDU (IOD case) or deliver to UL and mark as delivered (OOD case)

· If N = VR(R)
· Update VR(R) to the first missing PDU
· If VR(H) < N

· Start a new t-Reordering timer instance i associated to V(Xi) = N

· Update VR(H)

· If t-Reordering i expires

· Update VR(R) to the first missing PDU with SN >= VR(Xi)
· If one VR(RLi) is updated, and VR(RLj) is available for all configured legs j
· Update VR(R) to the earliest of all VR(RLj) (if >= then current VR(R))
· Whenever VR(R) is updated

· Deliver the stored PDCP SDUs which falls out of the receiving window to upper layers (only applicable when IOD to upper layers is configured)

· If VR(Xi) <= VR(R) for any i (i.e. PDUs which were waited for are received)

· The timer i is stopped and reset

[image: image5.emf]SNs

VR(R)

Receiving Window

VR(MR) VR(Xi) VR(Xj) VR(H)

PDCP PDUs already handled (PDCP SDUs provided to upper layers)

PDCP SDUs stored (IOD case) or marked as delivered (OOD case)

Figure 3

_1551038481.vsd
Frame segment

_1551044646.vsd
SNs

LastSub

Reordering (receiving) Window

_1551093197.vsd
PDCP SDUs stored (IOD case) or marked as delivered (OOD case)

_1544546827.vsd
SNs

X

H

R

Reordering Window

_1543785413.vsd
C

D ms

