
3GPP TSG-RAN2#97 meeting
R2-1701321
Athens, Greece, 13-17 February 2017
Agenda Item:

7.16.2 - TEI13
Source:
Qualcomm Inc.
Title:
Early implementation of LTE features
Document for:

Discussion and decision

1 Introduction

The following two aspects regarding early implementation of features were discussed in the past RAN2 meetings, e.g., [1][2]:

1)
Documentation of which features for early implementation, and

2)
The requirements and guidelines for early implementation of features.
In this paper, we discuss our understanding on these two aspects.

2 Discussion
2.1 Non Technical aspects
The timing for a feature deployment is entirely driven by market conditions and requirements. Whether RAN2 classifies a feature as early implementable or not, will have no impact on that decision.

Proposal 1:
RAN2 should not spend time classifying which features are early implementable and which are not.

3GPP’s responsibility is to define specifications that allow compatibility, and facilitate the deployment for operators.
Proposal 2: RAN2 should enable the early implementation of all features by providing generic design guidelines.

2.2 Technical analysis
The LTE RRC ASN.1 is by design backward and forward compatible: A UE of release R ASN.1 version R.x is compatible with networks of releases R-n and R+n of any ASN.1 versions. For example, any two of the following ASN.1 versions should be compatible.

Table 1: Relationship among current 36.331 ASN.1 versions. The green boxes show that a new release is based on an earlier release version.

	11
	11.1
	…
	11.5
	11.6
	 11.7
	 11.8
	 11.9
	 11.a
	 11.b
	11.c
	 11.d

	
	
	
	
	12.0
	12.1
	…
	12.7
	12.8
	 12.9
	 12.a
	 12.b

	
	
	
	
	
	
	
	
	13.0
	13.1
	…
	13.4

This ASN.1 syntax flexibility is the selling point of this syntax language and is not constrained or limited by 3GPP releases. This was further helped by the ASN.1 style adopted in RAN2, which for example has enabled the late introduction of features to an earlier release.

When a release R feature is added in a release R-1 baseline, the ASN.1 compiler itself is not aware that it belongs to a different release. The only thing that matters is whether the counterpart definition exists at the receiver end, and whether the procedures are compatible.
For example, assume an operator wants to deploy a R13 v13.6 feature via early implementation on R12 baseline. The possible combinations of eNB and UE ASN.1 version support are below.
	
	eNB: R12 v12.8
	eNB: R12 v12.8 +XYZ R13 v13.6 feature
	eNB: R13 v13.7

	UE: R12 v12.7
	(A) Standard Fwd/Bwd Compatibility
	(B) Standard Fwd/Bwd Compatibility (*)
	(C) Standard Fwd/Bwd Compatibility

	UE: R12 v12.7 + XYZ R13 v13.6 feature
	(D) Standard Fwd/Bwd Compatibility (*)
	(E) Matching extensions.
	(F) Matching extensions or
Standard Fwd/Bwd Compatibility

	UE: R13 v13.6
	(G) Standard Fwd/Bwd Compatibility
	(H) Matching extensions or
Standard Fwd/Bwd Compatibility
	(I) Standard Fwd/Bwd Compatibility

(A), (C), (G), (I): Standard backward and forward compatibility. No explanation is needed.
(E): Common sense early implementation. Assuming an operator asks for a Rel-13 feature to be implemented immediately before the UE and eNB vendors are ready for the release Rel-13 baseline, a common sense implementation is to use the appropriately needed ASN.1 extensions and procedures from Rel-13.
(A) => (B): With respective to R12 v12.7, the “Rel-12 36.331 v12.8 + XYZ R13 v13.6 feature” is effectively similar to R12 v12.9, so the same mechanisms that allow a Rel-12 v12.7 UE to operate in a Rel-12 v12.8 network, would allow the Rel-12 v12.7 UE to operate in a Rel-12 v12.8 network that has implemented an extension for Rel-13.
(E) & (C) => (F) Similarly, a true Rel-13 network can interoperate with a Rel-12 UE that has implemented one Rel-13 feature, as long as the eNB does not introduce superfluous checks comparing the UE release and its feature set.
(G) => (D): The implementation of a rel-12 eNB cannot assume what is Rel13. Rel-13 may well be just the addition of the XYZ feature. Rel-12 itself may be extended (e.g., to 36.331 v12.9) after the deployment of the eNB (e.g., 36.331 v12.8). So, a good eNB implementation shall be able to ignore any ASN.1 extension it doesn’t understand.
(E) & (G) => (H): With (E) and (G) established, (H) is also a given. A good eNB implementation that added one feature of Rel-13, should accept a true Rel-13 UE as well by the same mechanism it accepts a Rel12 UE supporting the XYZ feature. Also, the Rel13 UE is not aware of the release of the network, so, there is no dependency on the full support of Rel-13 by the network.
Observation: A good implementation practice at the eNB is to treat features individually and ignore unknown ASN.1 parts as done in normal forward and backward compatibility.

Proposal 3: RAN2 should develop standard guidelines that allows a UE and an eNB to implement a coherent part of ASN.1 from a newer release.
Proposal 4: RAN2 should develop standard guidelines that recommend eNBs to avoid excessive cross checking between a UE’s release and its capability set or ASN.1 branch support, so that eNB can safely ignore the ASN.1 branches that the eNB does not care or understand.
3 Conclusion
Proposal 1:
RAN2 should not spend time classifying which features are early implementable and which are not.

Proposal 2: RAN2 should enable the early implementation of all features by providing generic design guidelines.

Proposal 3: RAN2 should develop standard guidelines that allows a UE and an eNB to implement a coherent part of ASN.1 from a newer release.
Proposal 4: RAN2 should develop standard guidelines that recommend eNBs to avoid excessive cross checking between a UE’s release and its capability set or ASN.1 branch support, so that eNB can safely ignore the ASN.1 branches that the eNB does not care or understand.
4 References

[1] R2-167869 Clarification on UE capability and feature support (Samsung)

[2] R2-168540 Documentation of Early feature support (Ericsson)

