Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _GoBack]3GPP TSG-RAN WG2 #96	Tdoc R2-168393
Reno, Nevada, USA, 14th – 18th November 2016

Agenda Item:	9.2.2.4
Source:	Ericsson
Title:	NR RRC methodology
Document for:	Discussion, Decision

Introduction
This contribution discusses Radio Resource Control (RRC) protocol extensibility issues and proposes some improvements that could be used for 5G RRC.
[bookmark: _Ref178064866]Discussion
ASN.1 extensibility issues
3GPP radio interfaces are generally evolved and maintained by using extensions. In long-term, most of the content of a mature RRC protocol is typically composed of extensions.
Normally extensions appear sequentially in ascending order based on the release where they are added. A new version of the specification is a copy of earlier version and therefore these extensions are automatically included whenever a new specification version is created. In such cases, extensions are ensured to be consistent between different versions of the protocol. Consistency is necessary for the sake of compatibility because the UE and network can be based on different specification versions.
A problem arises, since extensions are sometimes needed for corrections of earlier frozen releases. It means that an extension may be added in several versions of the specification. It is therefore necessary to check the consistency of extensions between different versions whenever corrections are approved. Unfortunately, the checking cannot easily be automated and hence some visual checking is always needed.
[bookmark: _Toc462784752][bookmark: _Toc462785227][bookmark: _Toc462786764][bookmark: _Toc462818330][bookmark: _Toc462829873][bookmark: _Toc462908542][bookmark: _Toc462921561][bookmark: _Toc462923896][bookmark: _Toc462933068][bookmark: _Toc462935969][bookmark: _Toc462936259]It must be visually checked that sequentially added extensions are consistent between different protocol versions.
Adding an extension to a message is not necessarily always possible without checking the extensions of several versions of the protocol. If an extension is needed to an earlier frozen version of the protocol, it cannot be added in such a place where a later version of the same protocol already introduces an extension (and therefore, shadow CRs are arguably the most difficult maintenance CRs from ASN.1 point of view).
[bookmark: _Toc462733547][bookmark: _Toc462733558][bookmark: _Toc462737341][bookmark: _Toc462738273][bookmark: _Toc462738395][bookmark: _Toc462776162]One widely-used solution (especially in TS 25.331) is to backport extensions from a later release to an earlier release and specify that these extensions are not used (or made “dummy”) in the earlier release. Previous experiences have shown that backporting typically means substantial changes in already frozen versions and they have often resulted into serious errors e.g. error propagation when erroneous code is backported.
[bookmark: _Toc462784753][bookmark: _Toc462785228][bookmark: _Toc462786765][bookmark: _Toc462818331][bookmark: _Toc462829874][bookmark: _Toc462908543][bookmark: _Toc462921562][bookmark: _Toc462923897][bookmark: _Toc462933069][bookmark: _Toc462935970][bookmark: _Toc462936260]Backporting of extensions to an earlier version may easily go wrong, e.g. they may propagate errors.
[bookmark: _Toc462784754][bookmark: _Toc462785229][bookmark: _Toc462786766][bookmark: _Toc462818332]Another solution is to create parallel structures for late extensions, i.e. late non-critical extensions (in 36.331) or variable length extension containers (in 25.331). Such late extensions are contained in octet strings and therefore they are encoded and decoded separately from the rest of the message. 25.331 limits the number of variable length extension containers into one per message whereas 36.331 does not have any specified limitations for the number of late non-critical extension containers. Even though these containers can help the problem it is practically impossible to contain arbitrarily many separately encoded/decoded octet strings in the same message without creating issues from encoder and decoder implementation point of view.
[bookmark: _Toc462829875][bookmark: _Toc462908544][bookmark: _Toc462921563][bookmark: _Toc462923898][bookmark: _Toc462933070][bookmark: _Toc462935971][bookmark: _Toc462936261]It is not practically possible to include arbitrarily many late extension containers in the same message.
It may also happen that a late extension container cannot accommodate a late extension because also late extensions appear sequentially, e.g. -r9 extension cannot be added if the container already has -r10 and -r11 extensions. In such cases, either a new container must be defined (if possible) or backporting must be used.
As of today, there are many extension possibilities for messages, message classes, information elements and containers; there are extension markers and extension addition groups, critical extensions, intra-release critical extensions, (ordinary) non-critical extensions, late non-critical extensions (or variable length extension containers), spare values, and reserved fields. It can be argued that there are many extension mechanisms and their proper usage requires thorough understanding of elaborated rules including their exceptions.
E.g. extensions are added where they logically belong to unless ordinary non-critical extensions or late non-critical extension containers are used where extensions are added in the end of the message (or container). Extension markers are used for (both build-in and user-defined) structured data types except for uplink messages (but there is one exception to this exception). If there are multiple extensions that are based on empty sequences in the same message, all of them except the last one must be contained as octet strings because otherwise there is no length indicator. Extension addition groups are used for extensible sequence types but not for extensible choice types. Etc.
[bookmark: _Toc462908545][bookmark: _Toc462921564][bookmark: _Toc462923899][bookmark: _Toc462933071][bookmark: _Toc462935972][bookmark: _Toc462936262]There are many extension mechanisms and their proper usage requires thorough understanding of elaborated rules including their exceptions.
A natural consequence of having many extension possibilities is that they tend to complicate the addition of extensions because it is not necessarily always clear for the authors what kind of extensions should be used and they further require extra effort from reviewers.
[bookmark: _Toc462784755][bookmark: _Toc462785230][bookmark: _Toc462786767]Finally, encoding and decoding of some critical and non-critical extension types require bypassing of ITU-T standard concerning handling of trailing padding bits (see Annex A). 25.331 introduces an Encoding Control Notation (ECN) module that allows non-zero padding bits (after empty sequences) and it further specifies decoder behavior (see Annex B). It should be noted that specification of decoder behavior goes beyond the scope of encoding rules. The same kind of maneuvering is practically required for all 36.331 implementations as well even though the ECN module is not included in 36.331. It means that 3GPP RRC protocols make use of 3GPP-specific modifications of ITU-T standard.
[bookmark: _Toc462829876][bookmark: _Toc462908546][bookmark: _Toc462921565][bookmark: _Toc462923900][bookmark: _Toc462933072][bookmark: _Toc462935973][bookmark: _Toc462936263]RRC protocols require modifications of ITU-T encoding rules and specification of decoder behavior.
It could be debated whether these modifications are ITU-T compliant or not and if decoder behaviors should be left up to the implementer to decide but, whichever is the case, these modifications do not at least simplify anything.
Proposed improvements for NR RRC
One possible simplification is to limit the use of extension mechanisms to ITU-T specified mechanisms, i.e. extension markers, extension addition groups, spare values, and reserved fields. In that way, it should be more clear what kind of extension types should be used and where the extensions should be added because they are always added to the place where they logically belong to. Another advantage is that ITU-T compliant encoders, decoders and tools can be used without any 3GPP-specific modifications to ITU-T standards.
[bookmark: _Toc462733552][bookmark: _Toc462733563][bookmark: _Toc462738279][bookmark: _Toc462738399][bookmark: _Toc462776167][bookmark: _Toc462785247][bookmark: _Toc462818335][bookmark: _Toc462829878][bookmark: _Toc462921566][bookmark: _Toc462933073][bookmark: _Toc462935974][bookmark: _Toc462936257]Use only ITU-T specified extension mechanisms, i.e. extension markers, extension addition groups, spare values, and reserved fields.
[bookmark: _Toc462776165][bookmark: _Toc462784757][bookmark: _Toc462785232]It should be noted that basically all RAN3 specifications and 36.355 are based on this principle. It is also the mainstream approach outside of 3GPP, e.g. in IEEE and IETF.
Even though simplifications are desirable, they do not however remove the efforts needed for visual checking of extension consistency and they do not help the problems with late extensions and backporting. The root cause of these problems is that there are several versions of ASN.1 -- one in every RRC specification. A possible (and not-so-new) improvement is to write the ASN.1 in a release-independent manner such that all RRC releases can use one common ASN.1 definition which could further be placed in a separate document.
[bookmark: _Toc462738280][bookmark: _Toc462738400][bookmark: _Toc462776168][bookmark: _Toc462785248][bookmark: _Toc462818336][bookmark: _Toc462829879][bookmark: _Toc462921567][bookmark: _Toc462933074][bookmark: _Toc462935975][bookmark: _Toc462936258]Specify ASN.1 in a release-independent manner and maintain one common syntax for all specification versions.
It can be argued that RAN2 has nearly succeeded to accomplish something like this already. 36.355 ASN.1 is specified in a release-independent manner and, in principle, all implementations of 36.355 could be based on the latest version of the ASN.1, e.g. REL-9 LPP implementation could be based on REL-13 ASN.1.
Critical view
It may be questioned whether solely ITU-T specified extension mechanisms are efficient enough because the use of extension markers require length indicators, octet alignment and other type of encoder generated auxiliary data. It is not however obvious that there is so significant impact on the efficiency;
· Signaling is normally based on delta-configurations and therefore all configuration messages do not need to contain all possible extensions.
· Extensions can be added in extension addition groups where they share a common length indicator and where the whole group is octet aligned which is a more compact encoding than octet alignment of all extension fields separately.
· Currently many extensions, e.g. late extensions, must be contained as octet strings. Such containers have overhead that is comparable to extension marker overhead because octet strings also include length indicators and they are per-definition octet aligned. Why the overhead of these octet strings has never been raised as an issue?
· System information broadcast already has this type of overhead because system information blocks are defined as information elements and they are therefore extended by using extension markers. In addition, system information message, i.e. the message that includes all these blocks, is extensible with ordinary non-critical extensions. If encoding compactness is a real issue, extensions to system information blocks could be appended in the end of the system information message but, so far, this has not happened.
· Uplink messages are generally very small and the change of extension mechanism is not expected to have a significant impact on them. As of today, at least one uplink message has been extended by using extension markers and there have not been any overhead issues.
· Message sizes for downlink and uplink dedicated signaling can easily be reduced by using critical extensions but, so far, that kind of restructuring has not been considered necessary even though it is known that there can be configuration messages where half of the message may be composed of overhead [1].
Also UE capability containers tend to become large because they are frequently extended and therefore they must be encoded in a compact manner. Usually capabilities are single-bit indicators and it does not seem to be necessary to octet-align such capability indications. However, there are no reasons to define or extend UE capabilities (or any other size-critical message or container) in such a manner;
· One (or several) variable length bit string(s) and specification of capabilities in a tabular format could be used instead. There are even benefits compared to current methods because it would be possible to get rid of late extension containers and redundant optionality bits due to non-critical extensions. Arguably the encoding would be even more compact than that of current capability containers and the tabular format would be more readable than multiple times extended ASN.1 sequences.
Conclusion
In section 2 we made the following observations:
Observation 1	It must be visually checked that sequentially added extensions are consistent between different protocol versions.
Observation 2	Backporting of extensions to an earlier version may easily go wrong, e.g. they may propagate errors.
Observation 3	It is not practically possible to include arbitrarily many late extension containers in the same message.
Observation 4	There are many extension mechanisms and their proper usage requires thorough understanding of elaborated rules including their exceptions.
Observation 5	RRC protocols require modifications of ITU-T encoding rules and specification of decoder behavior.

Based on the discussion in section 2 we propose the following:
Proposal 1	Use only ITU-T specified extension mechanisms, i.e. extension markers, extension addition groups, spare values, and reserved fields.
Proposal 2	Specify ASN.1 in a release-independent manner and maintain one common syntax for all specification versions.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref174151459][bookmark: _Ref189809556]R2-131676, Comparison of Critical and Non-Critical Extensions, Ericsson, ST-Ericsson, RAN2#82, Fukuoka, Japan, May 20-24, 2013

Annex A: Extract from ITU-T Recommendation X.691
10 Encoding procedures
10.1 Production of the complete encoding
10.1.1 The field-list produced as a result of applying this Recommendation | International Standard to the outermost value shall be used to produce the complete encoding of the abstract syntax value as follows: each field in the field-list shall be taken in turn and concatenated to the end of the bit string which is to form the complete encoding of the abstract syntax value preceded by additional zero bits for padding as specified below.
10.1.2 In the UNALIGNED variant of these encoding rules, all fields shall be concatenated without padding. If the result of encoding the outermost value is an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string and it is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.
10.1.3 In the ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without padding, and any octet-aligned-bit-fields shall be concatenated after (zero to seven) zero bits have been concatenated to make the length of the encoding produced so far a multiple of eight bits. If the result of encoding the outermost value is an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string and it is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.
NOTE – The encoding of the outermost value is the empty bit string if, for example, the abstract syntax value is of the null type or
of an integer type constrained to a single value.
10.1.4 The resulting bit string is the complete encoding of the abstract syntax value.
Annex A: Extract from TS 25.331
[bookmark: _Toc446722235]12.2	ECN link module for RRC
RRC-ECN-Link-Module LINK-DEFINITIONS ::=
BEGIN

IMPORTS
	RRC-encodings				-- Encoding objects for RRC messages
FROM RRC-Encoding-Definitions;

ENCODE Class-definitions
	WITH RRC-encodings
	COMPLETED BY PER-BASIC-UNALIGNED

ENCODE PDU-definitions
	WITH RRC-encodings
	COMPLETED BY PER-BASIC-UNALIGNED

ENCODE InformationElements
	WITH RRC-encodings
	COMPLETED BY PER-BASIC-UNALIGNED

ENCODE Internode-definitions
	WITH RRC-encodings
	COMPLETED BY PER-BASIC-UNALIGNED

END

[bookmark: _Toc446722236]12.3	ECN modules for RRC
The encoding definition module "RRC-Encoding-Definitions" contains definition of the encoding object set "RRC‑encodings". The encoding object set contains all the specialized encoding for RRC.
RRC-Encoding-Definitions ENCODING-DEFINITIONS ::=

BEGIN

EXPORTS
	RRC-encodings;

RRC-encodings #ENCODINGS ::= {
	-- Trailing bits
	outer-encoding
}

--**
--
-- The trailing bits in all RRC messages shall be ignored
-- (including unknown message contents & unknown extensions).
-- This overrides the default PER behaviour which pads the last
-- octet with zero bits.
--
--**

outer-encoding #OUTER ::= {
	ENCODER-DECODER {
	}
	DECODE AS IF {
		POST-PADDING	encoder-option
	}
}

END

Class-definitions-ECN-Module ENCODING-DEFINITIONS ::=
BEGIN
END

PDU-definitions-ECN-Module ENCODING-DEFINITIONS ::=
BEGIN
END

InformationElements-ECN-Module ENCODING-DEFINITIONS ::=
BEGIN
END

Internode-definitions-ECN-Module ENCODING-DEFINITIONS ::=
BEGIN
END

	1/5	
