
3GPP TSG-RAN WG2 Meeting #96	R2-167948
Reno, USA, 14th – 18th November 2016

Source:	CATT
[bookmark: Title]Title:	Concatenation for NR U-plane stack
[bookmark: Source]Agenda Item:	9.2.1.1
[bookmark: DocumentFor]Document for:	Discussion and Decision

[bookmark: _Ref460855997]Introduction
The support of the concatenation function in NR RLC stack has been extensively discussed in the previous RAN2 meetings as well as in the email discussion [1]. In RAN2#95bis, no agreement could be reached on whether concatenation should be kept in RLC, with possible optimization regarding the header placements, or whether it should be removed thus letting RLC deliver RLC PDUs reflecting PDCP PDUs or segment of. In this contribution we summarize the key reasons motivating this change in the RLC functionality as well as other metrics impacted, such as header overhead. We list the possible options for concatenation, addressing the various performance criterions and provide our view on the preferred option.
Discussion
[bookmark: _Ref465612273]Criterions for solutions comparison
1. Pre-construction of MAC SDUs and sub-headers
One drawback of the legacy RLC is that the RLC header cannot be pre-constructed since the RLC PDU may concatenate multiple PDCP PDUs to fill the target resource just provided by the Logical Channel Prioritization (LCP) MAC function. Given the RLC header needs to reflect the information on the multiple concatenated and potentially segmented PDCP PDUs, the RLC header (and PDU) can only be constructed during the real-time operation i.e. after LCP has issued its grant. Similarly, the MAC sub-header associated with this RLC PDU cannot be pre-constructed since it includes the final length of the RLC PDU.
It is commonly understood that having the possibility to pre-construct RLC PDUs and associated RLC/MAC headers before LCP issues the grant would substantially simplify the UE implementation, specifically having in mind the need to support 20Gb/s bit-rate, resulting in concatenating at least 312.5 and 1666.6 PDCP PDUs within 1-ms TTI if 64 Kbit and 1500byte PDCP PDU size [2][3]. Note some proposals suggest allowing pre-construction of RLC PDUs while keeping the legacy stack. [4] has a set of semi-statically configured possible RLC PDU sizes, the RLC would prepare in advance. If there are many possible sizes (to keep the spectral efficiency provided by the current RLC design), this can lead to a large computation requirement (even offline) that would actually increase the UE complexity and be detrimental to battery life. [2] suggests pre-concatenation can be implemented based on the semi-static configuration from MAC or the experienced value learned by the RLC itself. However, since the pre-concatenated RLC PDU finally needs to be updated to fit the exact LCP grant, the whole RLC PDU always needs be adjusted and both RLC and MAC headers accordingly. Hence the implementation savings are unclear. In general, it seems clear that pre-construction of RLC PDUs and MAC-PDU subheaders is not possible without at least some minimum change to the legacy RLC/MAC stack.
Observation 1: Pre-construction of RLC PDUs and MAC-PDU subheaders is not possible without at least some minimum change to the legacy RLC/MAC stack.
2. Pipelining of PHY and MAC processing
Another drawback of the legacy RLC/MAC design on the transmitter side is that, since all MAC sub-headers are packed at the beginning of the MAC PDU, the MAC PDU can only be delivered to PHY when it is 100% constructed, thus preventing PHY starting early processing of the MAC PDU, e.g. channel coding of the first code blocks. A different header design could fix this issue by distributing the MAC subheaders with the associated data payload.
3. Receiver implementation
The above considerations tend to favor transmitter implementation optimization, but the receiver design should also be implementation friendly. Current legacy stack, having all MAC subheaders packed at the MAC PDU start, is well suited for receiver implementation. However, unlike in the transmitter, the receiver does not have the real-time constraint to deliver MAC PDUs upon LCP grant delivery and, as such, is executed instead in background. In addition, it is more important to try to reduce the processing latency between a scheduler decision and the actual time when the data it transmitted over the radio link so as to minimize channel prediction errors in the scheduler. Hence our view is that receiver optimization is not as critical as transmitter optimization.
Observation 2: Transmitter implementation optimization should be prioritized over receiver implementation optimization.
4. Support of unified SO-based segmentation
In RAN2#95bis meeting, the following agreement was made:
Agreement
=>	 SO-based segmentation can be considered for both segmentation and resegmentation as a baseline in NR user plane to support high data rate. (Does not imply anything about location of concatenation). At least overhead for the low data rate case should be analysed further.
SO-based segmentation is an important improvement in the segmentation design that allows a unified and flexible way to represent segments, when segments objects are PDCP PDUs. Indeed, since SO identifies the offset of the segment with respect to the original PDU:
1) RLC SN is not incremented across potential PDCP PDU segments, which allows allocating RLC SNs safely ahead of time, independently of possible further segmentation
2) the very same representation can be used for both initial PDU segments and re-segmented PDU segments
3) there is no need to maintain a specific RLC PDU buffer in support of potential retransmissions on top of the PDCP PDU transmission buffer
4) it allows flexible location of RLC (non-real-time) ARQ and RLC (real-time) segmentation functions in different nodes, such as e.g. RLC ARQ and segmentation in CU and DU respectively (split option 3-1 in [5]) without the need for RLC-low (in DU) to forward back to RLC-high (in CU) the RLC PDUs for potential ARQ retransmission. As a result, SO-based segmentation is well suited for flexible functional split across CU/DU, a key and new architecture component of NR.
 5) it is forward compatible by enabling further potential support of the segmentation function of PDCP PDUs in higher layers (e.g. PDCP) in further releases, if ever needed.
Observation 3: Unified SO-based segmentation allows for pre-allocating RLC SNs in advance irrespective of further segmentations, simplifies the ARQ retransmission buffer implementation, is flexible with respect to CU/DU split options and is forward compatible.
As already mentioned, all the above benefits of SO-based segmentation assume the segment object is the PDCP PDU. However, if concatenation is supported in the RLC, it is unclear what would be the segment object of SO. In case of an initial transmission, the segments, if any, are always at the start and end of an RLC PDU and the FI field is therefore best suited to signal presence/absence of segments. In the case of a re-transmission, the segment object is the initial RLC PDU, as in legacy design. Hence a unified SO-based segmentation for both initial RLC PDUs and re-segmented RLC PDUs seems not possible if concatenation is supported in RLC.
Observation 4: Unified SO-based segmentation can only be supported if RLC does not support concatenation.
5. Header overhead
Current legacy stack was actually designed primarily to address this performance criterion.
[bookmark: _Ref465679155]Comparative analysis of concatenation options
1. Option 1: concatenation in RLC
A solution addressing the criterion #2 of Section 2.1 while keeping the legacy RLC/MAC design is proposed in [6] as illustrated in Figure 1. This solution is based on changing only the placement of the headers in the MAC PDU by packing them all at the end of the MAC PDU. The argument used for reducing the transmitter complexity is that the RLC and MAC headers can be computed in parallel to the RLC data concatenation. However, as shown in the example of Figure 1, RLC headers may involve different fields (e.g. length fields) depending on the grant size and still cannot be pre-computed before the LCP issues its grant. In addition they require being stored temporarily waiting for being packed at the end of the MAC PDU. So if the MAC PDU payloads fields can indeed be sent to PHY as soon as they are constructed, we cannot consider that the associated RLC and MAC headers can be pre-constructed, i.e. before the LCP issues its grant. Hence this solution does not meet criterion #1. Another consequence of moving all headers at the end of the MAC PDU is that the receiver cannot start de-multiplexing the RLC PDUs before it has received the whole MAC PDU. Hence, this solution is not receiver friendly either, so does not meet criterion #3. As for criterion #4, as discussed in Section 2.1, since the solution is based on RLC concatenation, it cannot support unified SO-based segmentation, so cannot support all associated benefits. Finally, this solution provides the minimum header overhead, per the legacy design target.

[bookmark: _Ref458667245]Figure 1: Concatenation in RLC with header placement from [6]
2. Option 2: no concatenation
This solution is illustrated in Figure 2. Since PDCP PDUs are not concatenated, each RLC PDU corresponds to one PDCP PDU or a segment thereof. One bit in the RLC header indicates if the PDCP PDU has been segmented. The solution fulfils criterion #1 since PDCP PDUs can be appended with an RLC SN, the length field and the LCID as soon as they arrive in the transmission buffer. The “segment” bit is set to “not segmented” by default. It only needs to be changed to “segmented” during the real-time operation for the last PDCP PDU if that PDU is segmented to fit in the LCP grant. The leftover part of the PDU can right away be appended with the SO field indicating the offset with respect to the originating PDCP PDU, and is thus ready for the next LCP grant for that logical channel. It also fulfils criterion #2 since each multiplexed RLC SDU can be forwarded to PHY as soon as it is pushed (multiplexed) in the MAC PDU. It is also receiver friendly since, similarly, the MAC receiver can start de-multiplexing the RLC SDUs on the fly as they arrive. Regarding the potential difficulty in accessing the MAC headers not all located at the same place, it is our understanding that this can be taken care of by Direct Memory Access (DMA) engines which are currently broadly available along with all modern CPUs and System on Chips (SoCs) with minimum configurability capability to allow performing consecutive DMAs based on information read from the previous loaded data block (in that case, the previous header) without any CPU intervention. Hence we believe that the de-multiplexing in the MAC receiver can be fully offloaded by such broadly available features. Therefore this solution fulfils criterion #3. As discussed in Section 2.1, since concatenation is removed from RLC in this solution, it is best suited to support SO-based segmentation, and all associated benefits. Therefore it fulfills criterion #4. Now regarding the header overhead, the difference with option 1 essentially resides in the higher overhead of the RLC and MAC subheaders (essentially SN and LCID) and the larger expected size of the SO field compared with the legacy FI field.
Overhead due to larger number of RLC and MAC subheaders: this is mainly the case for the high data rate scenario, which is analyzed in [3] showing that the overhead increase is only 0.266%, due to the expected large packet size. On the other hand, the main concern raised with this solution is the higher overhead with small data transmission. However, it is not expected that the traffic types involving small packet transmissions will generate a large amount of consecutive small packets, but that such packets will be transmitted infrequently in time. In which case, most of the time, only one such packet is transmitted per transmission opportunity and the overhead is the same as for option 1.
Overhead due to the SO field: in the high data rate case, as highlighted in Section 2.1, a large number of RLC PDUs are multiplexed in a MAC PDU and the SO field is only present in the first PDCP PDU. Hence its associated overhead is expected negligible. The SO field overhead becomes significant when a large PDCP PDU is segmented into multiple transmissions, due to e.g. sparse channel resource. In this case, assuming the SO field size is the same range as the legacy LI field (11 bits), then the total (MAC+RLC) header per RLC SDU multiplexed in the MAC PDU is increased by 11 bits (all other header fields, LI, RLC SN, LCID, etc are present in the same way for both solution 1 and 2 in that case). Therefore, transmitting a large PDCP PDU through a reduced radio resource will take 11 additional bits per segment with solution 2 compared with solution 1.

[bookmark: _Ref465632192]Figure 2: No-concatenation solution
3. Option 3: concatenation in MAC
This solution is illustrated in Figure 3. It is very similar to option 2 except that the LCID field is pushed only once per logical channel. This provides the benefit of reducing the overhead due to duplicating this field on each PDCP PDU of the same logical channel. This field is only 3 bits in LTE, however depending on the QoS design, a much larger number of DRBs might be provisioned in NR. Therefore this saving can be significant. After constructing a MAC PDU, this field is appended to the next PDCP PDU or segment in the transmission queue, so can be pre-constructed before the next LCP grant is issued for this logical channel.

[bookmark: _Ref465632502]Figure 3: Concatenation in MAC
Comparison summary
Table 1 summarizes the comparison of the three options presented in Section 2.2 with respect to the criterions listed in Section 2.1. As can be observed, keeping the concatenation in RLC, even with the improvements suggested in [6] still make it difficult to remove the RLC processing burden from the real-time operation at the transmitter, which is seen as an implementation headache to address the NR peak rate of 20Gbits/s in the UE. In addition the proposed changes also make it receiver implementation unfriendly. Finally, it disallows taking profit of the unified SO-based segmentation representation, thus leaving the stack inflexible with respect to CU/DU split options and forward compatibility. On the other hand, the only drawback of the options without concatenation support in RLC is the header overhead. However, as discussed above, this is only significant for the usecase where a PDCP PDU is segmented into multiple transmission occasions due to a lack of available radio resources. Moreover, this additional overhead disappears if a single SN is used instead of the redundant PDCP and RLC SNs. Unfortunately, merging both SNs was only briefly discussed online at the last RAN2 meeting although simple solutions exist to address the issues brought up against this simplification, such as how to deal with PDCP SN gaps due to either PDCP discard or split bearer in DC. For example one simple and low-overhead solution is proposed in [7].

	Criterions / Options
	Option 1:
Concatenation in RLC [6]
	Option 2:
No Concatenation
	Option 3:
Concatenation in MAC

	Pre-construction of MAC SDUs and sub-headers
	
	
	

	Pipelining of PHY and MAC processing
	
	
	

	Receiver implementation
	
	
	

	Support of unified SO-based segmentation
	
	
	

	Header overhead
	
	
	 (but better than option 2)

[bookmark: _Ref465677955]Table 1: Comparative analysis of the three options
From the above analysis, we recommend removing the concatenation function from the RLC.
Proposal 1: RLC shall not support concatenation in NR.
Conclusion
This contribution analyzes various options for the concatenation function in the NR U-plane stack, based on the discussions so far. The resulting observations and proposal are as follows:
Observation 1: Pre-construction of RLC PDUs and MAC-PDU subheaders is not possible without at least some minimum change to the legacy RLC/MAC stack.
Observation 2: Transmitter implementation optimization should be prioritized over receiver implementation optimization.
Observation 3: Unified SO-based segmentation allows for pre-allocating RLC SNs in advance irrespective of further segmentations, simplifies the ARQ retransmission buffer implementation, is flexible with respect to CU/DU split options and is forward compatible.
Observation 4: Unified SO-based segmentation can only be supported if RLC does not support concatenation.
Proposal 1: RLC shall not support concatenation in NR.
References
1. [bookmark: _Ref457817246]R2-166904, “Report from [95#26] Concatenation (Ericsson)”, Ericsson
1. [bookmark: _Ref465610707]R2-166347, “Consideration on the Pre-concatenation in RLC for NR”, ZTE, ZTE Microelectronics
1. [bookmark: _Ref465673198]R2-166475, “Concatenation for NR”, Samsung
1. [bookmark: _Ref465611838]R2-166197, “Pre-Construction of RLC PDU”, Huawei, HiSilicon
1. [bookmark: _Ref465609040]R3-161962, 3GPP TR 38.801, “Study on New Radio Access Technology, Radio Access Architecture and Interfaces (Release 14)”
1. [bookmark: _Ref465612442]R2-166824, “Placement of RLC/MAC headers”, Ericsson
1. [bookmark: _Ref466033077]R2-16xxxx, “On usage of PDCP SN at RLC for NR”, Nokia, Alcatel-Lucent Shanghai Bell, CATT, Qualcomm

5
R2-167948
image2.emf
PDCP

SN

PDCP

SN

PDCP

SN

LCID1

LCID2

PDCP

SN

RLC

SN

PDCP

SN

RLC

SN

PDCP

SN

RLC

SN

RLC

SDU

PDU

MAC

SDU

PDU

PDCP

SN

RLC

SN

LI

PDCP

SN

RLC

SN

PDCP

SN

RLC

SN

L

CI

D

2

RLC

SN

SO

RLC

SN

SO

L

CI

D

2

Same

L

CI

D

1

LI

L

CI

D

1

LI

LI

Can be fully pre-constructed

Next

grant

1 bit indicates

segment

oleObject2.bin
텍스트�

PDCP SN

PDCP SN

PDCP SN

LCID1

LCID2

PDCP SN

PDCP SN

PDCP SN

RLC SN

RLC SN

RLC SN

RLC

SDU

PDU

MAC

SDU

PDU

PDCP SN

RLC SN

LI

PDCP SN

RLC SN

LI

PDCP SN

RLC SN

LCID2

SO

RLC SN

RLC SN

SO

LCID2

Same

LCID1

LCID1

LI

LI

Can be fully pre-constructed

Next grant

1 bit indicates segment

image3.emf
PDCP

SN

PDCP

SN

PDCP

SN

LCID1

LCID2

PDCP

SN

RLC

SN

RLC

SN

PDCP

SN

RLC

SN

RLC

SDU

PDU

MAC

SDU

PDU

PDCP

SN

RLC

SN

LI

PDCP

SN

RLC

SN

PDCP

SN

RLC

SN

L

CI

D

2

RLC

SN

SO

RLC

SN

SO

L

CI

D

2

Same

L

CI

D

1

LI LI

LI

Can be fully pre-constructed

Next

grant

1 bit indicates

segment

1 LCID per

logical channel

data block

PDCP

SN

oleObject3.bin
텍스트�

PDCP SN

PDCP SN

PDCP SN

LCID1

LCID2

PDCP SN

RLC SN

PDCP SN

RLC SN

PDCP SN

RLC SN

RLC

SDU

PDU

MAC

SDU

PDU

PDCP SN

RLC SN

LI

PDCP SN

RLC SN

PDCP SN

RLC SN

LCID2

RLC SN

SO

RLC SN

SO

LCID2

Same

LCID1

LI

1 LCID per logical channel data block

LI

LI

Can be fully pre-constructed

Next grant

1 bit indicates segment

image1.emf
PDCP

SN

PDCP

SN

PDCP

SN

LCID1

LCID2

PDCP

SN

RLC

SN

PDCP

SN

RLC

SN

RLC

SDU

PDU

MAC

SDU

LI

RLC

SN

RLC

SN

L

CI

D

2

+1

L

CI

D

1

LI

Next

grant

PDCP

SN

L1

PDCP

SN

PDCP

SN

PDCP

SN

RLC

SN

L1

RLC

SN

L

CI

D

2

LI

PDU

oleObject1.bin
텍스트�

PDCP SN

PDCP SN

PDCP SN

LCID1

LCID2

PDCP SN

RLC SN

PDCP SN

RLC SN

RLC

SDU

PDU

MAC

SDU

PDU

LI

RLC SN

RLC SN

PDCP SN

LCID2

+1

LCID1

LI

Next grant

PDCP SN

L1

PDCP SN

PDCP SN

RLC SN

L1

RLC SN

LCID2

LI

