3GPP TSG-RAN WG2 Meeting #96 							R2-167830
Reno, USA, 14th – 18th November 2016

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Title:			Considerations on possible RLC optimizations for NR
Source:		ZTE Corporation, ZTE Microelectronics, Mediatek Inc.
Document for: 	Discussion and decisions
Agenda Item: 	9.2.1.1

Introduction
This document addresses two potential areas for improvement of the NR RLC protocol:
1. Modification or RLC procedures to maximize offline computation at UE TX side (i.e. before a grant is received)
2. Modification of the RLC header for hardware friendly implementation at TX/RX
Maximization of offline RLC TX operation
Following the discussion at RAN2#95bis (see [1][2][3][4][5]), this section compares different alternatives regarding RLC concatenation showing what can be computed offline (i.e. before a grant is received) and what needs to be computed runtime (i.e. after a grant is received) at TX UE side according to the different alternatives.
Note: for all the alternatives the assumption is that RLC PDUs are always sent to MAC only after a grant is received / LCP is performed (as RLC needs to prioritize the retransmission of NACKed RLC PDUs and RLC control PDUs)
1. Legacy RLC procedure
Before a grant is received / LCP is performed:
· TX buffer (of RLC SDUs) and reTX buffer (of RLC PDUs) are constantly updated
 	(and reTX and RLC control PDUs are prioritized over new TX)
Only after a grant is received / LCP is performed:
· Segmentation & concatenation of RLC SDUs
· Addition of RLC header
· RLC PDUs are sent to MAC
· MAC multiplexing is performed
[image:]
Figure 1: Legacy RLC procedure
2. No RLC concatenation
Before a grant is received / LCP is performed:
· A RLC header is attached to each PDCP PDU upon arrival from higher layers
· TX buffer (of RLC PDUs) and reTX buffer (of RLC PDUs) are constantly updated
(and reTX and RLC control PDUs are prioritized over new TX)
Only after a grant is received / LCP is performed:
· Re-segmentation of the last RLC PDU which does not fit the grant size & RLC header re-computation
· RLC PDUs are sent to MAC
· MAC multiplexing is performed

[image:]
Figure 2: No RLC concatenation
3. RLC pre-concatenation – Single RLC PDU
Before a grant is received / LCP is performed:
· TX buffer (of RLC SDUs) and reTX buffer (of RLC PDUs) are constantly updated
(and reTX and RLC control PDUs are prioritized over new TX)
· All Length Indicator fields are pre-computed and stored & all buffered RLC SDUs are concatenated (the same data buffer can be used for both PDCP and RLC). Next RLC SN is determined
Only after a grant is received / LCP is performed:
· The RLC header is generated, based on the pre-computed SN & LI fields corresponding to the RLC SDUs (including the last RLC SDU segment) that can fit in the grant. The start and end memory addresses of the sequence of pre-concatenated RLC SDUs are determined and a copy of the data is appended to the header.
· RLC PDUs are sent to MAC
· MAC multiplexing is performed
Note1: This alternative is already allowed by current specification (no spec change is needed)
Note2: FI-based segmentation of the last RLC SDU is needed in this case.
[image:]
Figure 3: RLC pre-concatenation – Single RLC PDU
4. RLC pre-concatenation – Single RLC PDU & no RLC SDU segmentation across RLC PDUs
Before a grant is received / LCP is performed:
· TX buffer (of RLC SDUs) and reTX buffer (of RLC PDUs) are constantly updated
 	(and reTX and RLC control PDUs are prioritized over new TX)
· All Length Indicator fields are pre-computed and stored & all buffered RLC SDUs are concatenated (the same data buffer can be used for both PDCP and RLC). Next RLC SN is determined
Only after a grant is received / LCP is performed:
· The RLC header is generated, based on the pre-computed SN & LI fields corresponding to the complete RLC SDUs that can fit in the grant. The start and end memory addresses of the sequence of pre-concatenated RLC SDUs are determined and a copy of the data is appended to the header.
· RLC PDUs are sent to MAC
· MAC multiplexing is performed
Note: this option also means that RLC SDU segmentation across multiple RLC PDUs is not used (re-segmentation in multiple RLC PDU segments is still supported). For a given LCID, a bit less data than granted by LCP may be transmitted.
[image:]
Figure 4: RLC pre-concatenation – Single RLC PDU
& no RLC SDU segmentation across RLC PDUs
Observation 1: Alternatives 3&4 (RLC pre-concatenation – single RLC PDU per LCID in a given MAC PDU) increase the amount of RLC TX operation that can be processed offline w.r.t. Alternative 1. However the final computation of the RLC header can still be performed only after a grant is received / LCP is performed.
5. RLC pre-concatenation – Multiple RLC PDUs
Before a grant is received / LCP is performed:
· Multiple RLC PDUs concatenating multiple (complete and segmented) RLC SDUs, up to a maximum size/number, are pre-computed
FFS how the maximum size is set (e.g. related to PBR*TTI or even left to UE implementation)
· TX buffer (of RLC PDUs) and reTX buffer (of RLC PDUs) are constantly updated
(and reTX and RLC control PDUs are prioritized over new TX)
Only after a grant is received / LCP is performed:
· Re-segmentation of the last RLC PDU which does not fit the grant size & RLC header re-computation
· RLC PDUs are sent to MAC
· MAC multiplexing is performed
Note: FI-based segmentation of RLC SDUs might be needed in this case.
[image:]
Figure 5: RLC pre-concatenation – Multiple RLC PDUs

6. RLC pre-concatenation – Multiple RLC PDUs & no RLC SDU segmentation across RLC PDUs
Before a grant is received / LCP is performed:
· Multiple RLC PDUs concatenating multiple complete RLC SDUs, up to a maximum size/number, are pre-computed (each RLC PDU only containing complete RLC SDUs).
FFS how the maximum size is set (e.g. related to PBR*TTI or even left to UE implementation)
· TX buffer (of RLC PDUs) and reTX buffer (of RLC PDUs) are constantly updated
(and reTX and RLC control PDUs are prioritized over new TX)
Only after a grant is received / LCP is performed:
· Re-segmentation of the last RLC PDU which does not fit the grant size & RLC header re-computation
· RLC PDUs are sent to MAC
· MAC multiplexing is performed
Note: this option means that RLC SDU concatenation is possible while RLC SDU segmentation across multiple RLC PDUs is not (re-segmentation in multiple RLC PDU segments is still supported).
[image:]
Figure 6: RLC pre-concatenation – Multiple RLC PDUs
& no RLC SDU segmentation across RLC PDUs
Observation 2: The runtime processing for alternatives 2 (no RLC concatenation) & 5/6 (RLC pre-concatenation – Multiple RLC PDUs per LCID in a given MAC PDU) is exactly the same: in both cases re-segmentation of the last RLC PDU which does not fit the grant size is required.
Observation 3: For both alternatives 2 (no RLC concatenation) & 6 (RLC pre-concatenation – Multiple RLC PDUs per LCID in a given MAC PDU, no RLC SDU segmentation) RLC SDU segmentation across multiple RLC PDUSs is not supported, while SO-based re-segmentation of a RLC PDU is still supported.
Proposal 1: RLC SDU concatenation is supported, via offline pre-computation of multiple RLC PDUs, each concatenating multiple RLC SDUs, up to a maximum size/number of concatenated RLC SDUs.
FFS how the maximum size is set (e.g. related to PBR*TTI or even left to UE implementation)
Proposal 2: Discuss whether each pre-computed RLC PDU shall only contain complete RLC SDUs (implying that RLC SDU segmentation may only be performed via SO-based re-segmentation of a RLC PDU).
Modified RLC header
If the outcome of the discussion on Proposal 2 is that RLC SDU segmentation may only be performed via SO-based re-segmentation of a RLC PDU, a first possible RLC header modification is the removal of the FI field.
Proposal 3: (depending on the outcome of the discussion on Proposal 2) Remove the FI field from the RLC header.
One of the remaining problems, in case of RLC concatenation, is the variable size of the RLC header for RLC PDUs (due to the need to include the LI fields) and more specifically with the fact that a decoder only knows how many LI fields (and then PDCP PDUs) are concatenated, and where actual data starts, only after decoding all LI extension fields.

Figure 7: AMD PDU with 10 bit SN (length of LI field is 15 bits) (from Fig. 6.2.1.4-4 in TS 36.322)
One possible alternative is to include in the RLC header an additional field “#LI” (e.g. one or two bytes) indicating the number of LI fields following the fixed part of the RLC header (and the number of PDCP PDUs concatenated in the same RLC PDU) and then where the actual data part starts. With one byte it would be possible to indicate up to 255 concatenated PDCP PDUs. With two bytes it would be possible to indicate up to 65535 concatenated PDCP PDUs. The only drawback of this approach is one or two bytes overhead, depending on the size of the “#LI” field, which could be fixed in the specification or made configurable.
The variable part of the RLC header would be constituted by n fixed size LI extension fields, where n is indicated by “#LI”, so that its size can be immediately known as soon as the “#LI” field is decoded. The LI extension fields could be octet aligned (as in the Figure 8 where each LI field is 16 bits long) or they could also be half-octet aligned (e.g. 12 bits long).

	D/C
	RF
	P
	R
	R
	E
	SN

	SN

	#LI

	L1

	L1

	L2

	L2

	Ln

	Ln

	Data

Figure 8: AMD PDU with 10 bit SN with additional ‘#LI’ field (length of LI field is 16 bits)
Proposal 4: Introduce an additional field (e.g. “#LI”) in the RLC header indicating the number of LI fields following the fixed part of the RLC header and then where the actual data part starts (and avoiding the need for extension bits).
A further proposal is to unify the RLC header format for RLC PDUs and RLC PDU segments. For RLC PDU segments the format could be as shown below in Figure 9.
	D/C
	RF
	P
	R
	R
	E
	SN

	SN

	LSF
	SO

	SO

	#LI

	L1

	L1

	L2

	L2

	Ln

	Ln

	Data

Figure 9: AMD PDU segment (10 bit SN, 8 bit ‘#LI’ and 16 bits LI fields)
The D/C and P fields would be the same as in LTE. The E field would indicate the presence of the LI information (note that only one of the RLC PDU segments would need to carry the LI fields). Also the LSF and SO fields would be the same as in LTE.
Regarding the RF field: if RF = 0, this would indicate a RLC PDU; if RF = 1, this would indicate a RLC PDU segment. If RF = 0, then LSF and SO could not be present and the RLC header format would become the one shown in Figure 8.
But actually, it would be possible to specify exactly the same format for RLC PDUs and RLC PDU segments, defining LSF and SO fields as mandatory fields (and also removing the unnecessary RF field), as shown in Figure 10. LSF=1 and SO=0 would identify a complete RLC PDU, while for a RLC PDU segment SO would always be > 0.
	D/C
	P
	E
	R
	SN

	SN

	LSF
	SO

	SO

	#LI

Figure 10: Common RLC header fixed part for AMD PDU and AMD PDU segment (12 bit SN, 8 bit ‘#LI’)
Proposal 5: Specify the same format for RLC PDUs and RLC PDU segments, defining LSF and SO fields as mandatory fields (and also removing the unnecessary RF field).
Conclusions
Observation 1: Alternatives 3&4 (RLC pre-concatenation – single RLC PDU per LCID in a given MAC PDU) increase the amount of RLC TX operation that can be processed offline w.r.t. Alternative 1. However the final computation of the RLC header can still be performed only after a grant is received / LCP is performed.
Observation 2: The runtime processing for alternatives 2 (no RLC concatenation) & 5/6 (RLC pre-concatenation – Multiple RLC PDUs per LCID in a given MAC PDU) is exactly the same: in both cases re-segmentation of the last RLC PDU which does not fit the grant size is required.
Observation 3: For both alternatives 2 (no RLC concatenation) & 6 (RLC pre-concatenation – Multiple RLC PDUs per LCID in a given MAC PDU, no RLC SDU segmentation) RLC SDU segmentation across multiple RLC PDUSs is not supported, while SO-based re-segmentation of a RLC PDU is still supported.
Proposal 1: RLC SDU concatenation is supported, via offline pre-computation of multiple RLC PDUs, each concatenating multiple RLC SDUs, up to a maximum size/number of concatenated RLC SDUs.
FFS how the maximum size is set (e.g. related to PBR*TTI or even left to UE implementation)
Proposal 2: Discuss whether each pre-computed RLC PDU shall only contain complete RLC SDUs (implying that RLC SDU segmentation may only be performed via SO-based re-segmentation of a RLC PDU).
Proposal 3: (depending on the outcome of the discussion on Proposal 2) Remove the FI field from the RLC header.
Proposal 4: Introduce an additional field (e.g. “#LI”) in the RLC header indicating the number of LI fields following the fixed part of the RLC header and then where the actual data part starts (and avoiding the need for extension bits).
Proposal 5: Specify the same format for RLC PDUs and RLC PDU segments, defining LSF and SO fields as mandatory fields (and also removing the unnecessary RF field).
References
[1]. [bookmark: _Ref465664523]R2-166197, Pre-construction of RLC PDU, Huawei, HiSilicon
[2]. [bookmark: _Ref465664488][bookmark: _Ref466025318]R2-166347, Consideration on the pre-concatenation in RLC for NR, ZTE, ZTE Microelectronics
[3]. [bookmark: _Ref465662298]R2-166475, Concatenation for NR, Samsung
[4]. [bookmark: _Ref458604852][bookmark: _Ref447035248][bookmark: _Ref450578472][bookmark: _Ref465072754]R2-167190, Way forward for concatenation discussion, Ericsson, Huawei, ZTE.
[5]. [bookmark: _Ref465072756]R2-167199, On concatenation in NR, Samsung, Alcatel-Lucent Shanghai Bell, ASUSTeK, Broadcom, CATT, CHTTL, Convida wireless, ETRI, HTC, Innovative Technology Lab Co., Intel, InterDigital, IPCom, KT Corp., LG Electronics Inc, Nokia, NTU, OPPO, Panasonic, Qualcomm Incorporated, Verizon Wireless, Xiaomi

image4.png

image5.png

image6.png

image7.emf
ELI

1

LI

1

D/CRFPFIESN

SN

Data

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

ELI

K

LI

K

Oct [2*K+3]

...

Oct [2*K+2]

Oct [2*K+1]

oleObject1.bin
�

E�

LI1�

LI1�

D/C�

RF�

P�

FI�

E�

SN�

SN�

�

Data�

Oct [2*K+2]

Oct [2*K+1]

...

Oct N

Oct 1

Oct 2

Oct 3

Oct 4

...

E�

LIK�

LIK�

Oct [2*K+3]

image1.png

image2.png

image3.png

