Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #86
Tdoc R2-142400
Seoul, South Korea, 19th – 23rd May 2014
Agenda Item:
7.1.4
Source:
Ericsson
Title:
PDCP reordering for split bearer in dual connectivity
Document for:
Discussion, Decision
1 Introduction
In RAN2#85bis PDCP reordering implementation alternatives had been discussed for split bearer in dual connectivity. Several open issues were revealed, such as if a pulled or pushed reordering window shall be used, if the new reordering window needs to be a new functional block applied previously to the current PDCP reception algorithm, and how reordering after SCG removal can be supported. We will discuss these remaining issues within this contribution.
2 General issues of implementing PDCP reordering
In this section we would like to discuss general considerations for the implementation of the new PDCP reordering functionality.
2.1 Deciphering

Based on COUNT, the received PDU is deciphered. COUNT itself is based on SN of the received PDU, and HFN as determined by the receiver based on received PDUs. Only if HFN is determined correctly, the deciphering succeeds. Currently, HFN is determined based on relation of Next_PDCP_RX_SN, received PDCP SN, Reordering_window and Last_Submitted_PDCP_RX_SN, i.e. indeed based on current Push-based reordering window state. It is not clear that the current HFN determination is sufficient to deal with new types of out-of-order deliveries for split bearers, which are different from out-of-order deliveries of RLC at reestablishment in single connectivity. This motivates that the new reordering functionality needs to happen before the current HFN determination algorithm is invoked.
2.2 ROHC header decompression
In RAN2#85bis we clarified that RAN2 intends to support ROHC on split bearers unless significant problems are identified. For correct operation of ROHC, where header decompression is successful for compressed PDUs if decompressed with the current context, i.e. if an IR (Init and Refresh) packet had been received before, it is necessary that PDUs arrive in-order. In legacy RLC behaviour out of order delivery only occurs at reestablishment, where the context had been updated before. We conclude that in-order reception needs to be ensured for normal PDCP operation and thus:

Proposal 1 PDCP reordering should be the first functional block in the receiving PDCP entity.
2.3 HFN de-synch problem
We would like to point out that HFN de-synch may only occur when both more than half the SN space is brought in flight and when an SN wraparound had happened. In this situation the receiver, which can only distinguish between in-reordering-window and out-of-reordering-window (SN space half/half), is not able to determine the HFN of the received PDU.
2.4 Independency of current PDCP behaviour

To keep the current PDCP behaviour completely independent from the new reordering functionality, two alternatives exist: using a whole new procedure instead of the current one, or creating a separate new procedure for reordering, which is invoked before the current one. In the latter case, it is required that current state variables are not reused in the new reordering algorithm, which implies that new variables need to be introduced to PDCP.

Proposal 2 Current PDCP state variables in the reception algorithm should not be reused in the preceding new algorithm for PDCP reordering.
Introducing new variables for the new reordering functionality seems to be preferably than creating a whole new section in the specification as an alternative to the current reception algorithm. Therefore, we propose

Proposal 3 The new algorithm for PDCP reordering shall be kept in a separate functional block preceding the current reception algorithm.

2.5 Modulus and absolute value based operation

Modulus operation is advantageous as it provides an easier way of understanding the specification, however would not be aligned with the rest of the PDCP specifications. Further, comparisons and sorting are done with the help of a modulus base, i.e. determination of HFN and COUNT is not necessary. Looking at the current PDCP reception algorithm, determination of HFN and COUNT seems however required for comparisons and sorting in case of absolute value operation. However, assuming that these comparisons and sorting is only done for PDU SNs with a maximum difference of the Reordering_Window, which spans half the SN space, comparisons (and thus sorting) can be carried out as follows:

· PDU with SN H arrived later than PDU with SN L:
 if (0 < H – L < Reordering_Window) OR (L – H > Reordering_Window)
· Example as illustrated in Figure 1:
B > A because 0 < 18 - 17 < 10;
D > C because 19 - 0 > 10;
but not A > J because 0 < 17 - 7 < 10 is false and 7 – 17 > 10 is false;
and not A > B because 0 < 17 – 18 < 10 is false and 18 – 17 > 10 is false;

[image: image7.png]
Figure 1: Sorting of PDCP PDUs based on absolute value operation.
Bearing this example in mind it seems unnecessary to introduce a modulus-based operation into PDCP as it was done in RLC. We propose therefore to consider absolute value operation since it does not seem to introduce too high complexity as the example above suggests.
Proposal 4 The new reordering functionality shall be based on absolute value operation if specification complexity can be kept reasonably low.
3 Pulled or pushed PDCP reordering window operation

In this section we would like to discuss the differences between Pulled and Pushed based PDCP reordering window operation. Similarly to [2], we compare here two potential implementations, Pulled based PDCP window with reordering timer as in RLC UM (compare proposal in [6]), and a Pushed based approach with reordering timer (as proposed in [2]). We assume here that in both cases half the SN space is used as the reordering window size.

3.1 Pulled window

In pulled window operation the next SN after the currently received SN pulls up the window if this received SN was outside of the current window. So, SNs received outside of the window are considered as next SNs. SNs falling out of the window, i.e. the oldest SNs, while it is pulled up, are discarded. This behavior can be regarded as drop from front and is beneficial for the end to end performance (e.g. TCP) as compared to drop from end of queue. In case more than half the SN space is brought in flight, HFN de-synch might occur. In this case the window is pulled upwards and some of the oldest PDUs are forgotten. When these SNs are eventually received after SN wraparound had happened in the meantime, HFN de-synch occurs. This is illustrated in Figure 1. We note also that expiry of the reordering timer does not affect the pulled window.

[image: image2]
Figure 2: HFN de-synch problem for pulled window operation; an outstanding PDU forgotten after the moving reordering window is eventually received, pulling the window far forward.
3.2 Pushed window

In pushed window operation SNs received outside of the reordering window are considered as too late and thus are disregarded. This behavior can be regarded as drop from end of queue, i.e. the newest PDUs are discarded. The last delivered SN to higher layers is here used as an anchor point for the window, which, as it is below the window, pushes the window upwards. At expiry of the reordering timer, the SNs after the gap that started the timer are delivered to higher layers out of sequence; this behavior also pushes the window upwards. Moreover, for the pushed window, a general problem can occur in case more than half the SN space is brought in flight. This leads to a systematic error, where the reordering timer is started over and over again for PDUs which were discarded before. This problem is unrelated to HFN de-synch; it happens independent of SN wraparound, as illustrated in Figure 2.

[image: image3]
Figure 3: General problem for pushed window operation; reordering timer starts for previously discarded PDUs which were received outside of the reordering window.
3.3 Summary

Bearing the described problems in mind for both window operation options, we observe that it is of high importance for the PDCP transmitter not to bring more than half the SN space in flight. To ensure this requirement, a proper feedback mechanism from SeNB to MeNB needs to be established (see also [5]). Having knowledge about successfully delivered PDUs via RLC on MeNB and SeNB, the MeNB can estimate the current PDCP window state in the UE and avoid bringing more than half the SN space into flight.
As the pulled reordering window has the advantageous property for the end user performance of dropping the oldest PDUs first when more than half the sequence number space is brought in flight (if not HFN de-synch), instead of dropping the newest PDUs as in case of the pushed window, we prefer to reuse the pulled window operation in PDCP. Further, in order to account for rare cases where the MeNB accidently brings more than half the SN space in flight, we regard the described general issue of the Push based reception window to deal with this case as more severe than the HFN de-synch problem of the pulled window, which may happen only in even rarer cases where both more data than half the SN space is in flight and SN wrap-around happens in the receiver.
Proposal 5 PDCP reordering should be based on pulled window operation as in RLC UM.
4 On the PDCP SN space

To avoid that more than half the SN space is brought in flight by the PDCP transmitter, the MeNB needs feedback from both successfully delivered PDCP PDUs on RLC of MeNB and SeNB link to the UE. With this information the MeNB can estimate the state of the reordering timer and window in the UE receiver (successfully delivered PDCP SDUs). However, this estimation could potentially be failure affected, and to be on the safe side the MeNB would throttle down its transmission rate.

The relation between maximum possible throughput and round trip time (RTT) is shown in Figure 4 for a PDU size of 1500 byte and for two different SN spaces, based on 15 bit and 12 bit, respectively. For split bearers in dual connectivity, various delays contribute to the RTT, e.g. X2 delay, queuing in SeNB, varying need for RLC retransmissions on MeNB and SeNB link, and consequently PDCP reordering in UE. From Figure 4 it becomes obvious that throughput e.g. higher than 50Mbit/s cannot be supported by RTTs higher than 400ms with 12 bit SNs.
[image: image4.png]
Figure 4: Maximum possible throughput for different PDCP SN number spaces.

To support higher throughputs and to leave the PDCP transmitter enough space to avoid bringing more than half the SN space in flight, i.e. to avoid potential HFN de-synch, it needs to be ensured that the PDCP SN space is large enough in dual connectivity. Currently, the SN length of 15 bits seems sufficient, but according to TS 36.306 [7] is optional. We should make sure that it is mandatory instead for Rel-12 capable UEs.
Proposal 6 Usability of PDCP SN space of 15 bits should be mandatory for dual connectivity capable UEs.
5 Reordering after SCG removal

There is a need to apply PDCP reordering at or after SCG removal, e.g. in case a split bearer becomes an MCG bearer. This is because in this case some PDUs which were originally planned to be sent via the SCG could not be sent due to its removal, while PDUs with higher SNs could be successfully received via the MCG. This issue is among others discussed in [1].

Obviously one way to solve this issue is to always enable the reordering functionality in PDCP, even for non-split bearers. This should however be avoided to allow legacy AQM mechanisms (e.g. PDCP PDU discard in DL) to work as intended for non-split bearers, i.e. a discarded PDU leads to immediate out-of-sequence delivery in the receiver. Besides, it was already agreed (agreement 4 above) that reordering functionality should not be configured for non-split bearers.

In principle, the MeNB could re-order packets mapped to the MCG and SCG queues before (re)transmitting the PDUs to the UE after the SCG release. Then the UE would refill SN gaps similar to current PDCP reordering after re-establishment. The MeNB may continue directly from the smallest unacknowledged SN, but this can lead to unnecessary retransmissions. Alternatively, the MeNB would need to wait for feedback from the SeNB or optionally for a PDCP status report from the UE before continuing, but this would lead to data interruption. However, these solutions would require that the UE should re-establish both MCG and SCG RLC buffers. Otherwise there is a risk that pending out-of-order PDCP PDUs are received by the UE after receiving the release command on RRC level. By continuing the usage of the reordering timer even after SeNB removal, re-establishment of MCG RLC is not necessary.

However, just continuing one running reordering timer in the UE and disabling the reordering functionality afterwards does not solve the issue completely, since further PDUs might be missing for which the reordering timer needs to be started again. The reordering functionality can eventually be stopped when all missing gaps had been filled, i.e. the UEs reordering buffer is empty, see also [3].
In summary, we list here the following options for PDCP reordering after SCG removal:
1. Reuse of existing PDCP reordering after reestablishment. This implies that both SCG RLC and MCG RLC, as well as PDCP reestablishment procedures are invoked when SCG of a split bearer is removed. For this the MeNB is required to re-order and retransmit PDUs for the subsequent SN gaps filling by the UE which may lead to some data interruption (similar as in current handover).

2. Continued reordering functionality, e.g. until UE reordering buffer is empty. At SCG removal, in this case only the SCG RLC needs to be re-established (then released), i.e. the MCG RLC is maintained. PDUs are received out of sequence in this case, which is simply handled by the continued PDCP reordering functionality.
As explained above, reuse of the existing PDCP reordering after reestablishment, may lead to data interruption, it requires additional processing in MeNB, and with respect to SCG removal related to S-RLF, it is also considerably more complex [4]. Especially in the case of S-RLF, which is one possible trigger for SCG removal, we should make sure that the continuous data transfer of PDCP of a split bearer is not affected.

Proposal 7 Reordering in PDCP of split bearer shall be continued after SCG removal for some time, e.g. until UE reordering buffer is empty.
6 Conclusion
Based on the discussion above we make the following proposals:
Proposal 1
PDCP reordering should be the first functional block in the receiving PDCP entity.
Proposal 2
Current PDCP state variables in the reception algorithm should not be reused in the preceding new algorithm for PDCP reordering.
Proposal 3
The new algorithm for PDCP reordering shall be kept in a separate functional block preceding the current reception algorithm.
Proposal 4
The new reordering functionality shall be based on absolute value operation if specification complexity can be kept reasonably low.
Proposal 5
PDCP reordering should be based on pulled window operation as in RLC UM.
Proposal 6
Usability of PDCP SN space of 15 bits should be mandatory for dual connectivity capable UEs.
Proposal 7
Reordering in PDCP of split bearer shall be continued after SCG removal for some time, e.g. until UE reordering buffer is empty.

7 References

[1] R2-141544, PDCP reordering in dual connectivity, Ericsson, RAN2#85bis, Valencia, Spain, 31st Mar – 4th Apr 2014
[2] R2-141178, PDCP window handling for Dual connectivity, NSN, Nokia Corporation, RAN2#85bis, Valencia, Spain, 31st Mar – 4th Apr 2014

[3] R2-141396, PDCP reordering for 3C bearer, Samsung, RAN2#85bis, Valencia, Spain, 31st Mar – 4th Apr 2014

[4] R2-142403, Secondary Radio Link Failure (S-RLF), Ericsson, RAN2#86, Seoul, South Korea, 19th – 23rd May 2014

[5] R2-142399, PDCP feedback and flow control, Ericsson, RAN2#86, Seoul, South Korea, 19th – 23rd May 2014

[6] R2-141327, Introduction of dual connectivity in PDCP, LG Electronics Inc., RAN2#85bis, Valencia, Spain, 31st Mar – 4th Apr 2014
[7] 3GPP TS 36.306, User Equipment (UE) radio access capabilities, Release 12

1/6

[image: image1][image: image5.png][image: image6.png]