3GPP TSG-RAN WG2 Meeting #85
R2-140407
Prague, Czech Republic, 10 - 14 February 2014
Update of R2-133873
Agenda item:

7.2.1
Source:
NSN, Nokia Corporation
Title:
Assumptions to base reordering at PDCP
Document for:

Discussion and Decision

1
Introduction
RAN2#83bis chose the U-plane alternative 3C as a way forward, which makes PDCP responsible for reordering the PDUs received from the RLCs associated with the different eNBs. Over the course of discussions it has become apparent that companies seem to have quite different assumptions, based on which the reordering at PDCP should operate.
In this contribution we discuss what kind of assumptions the reordering at PDCP should rely on, with focus on downlink. The question has interdependence with e.g. what is assumed from the data delivery over the X2 interface.
2
Discussion

2.1
Current PDCP
For later reference: for a PDCP SDU received by the UE, the following two branches currently exist in the data-reception procedure for bearers mapped on AM:

1.
“Regular” branch: deliver to higher layer all stored SDUs with associated Count value up to and including that of the received SDU (ignoring possible missing SDUs), as well as a possible unbroken sequence of stored SDUs immediately following (in terms of Count value) the SDU received.

-
This is based on the underlying assumption that no SDUs associated with Count value less than the one received will no longer follow (even if missing).
2.
RLC-reset branch (RLC re-establishment, to be more precise): only deliver to higher layer a possible unbroken sequence of SDUs immediately following (in terms of Count value) Last_Submitted_PDCP_RX_SN; keep any other SDU stored
-
The underlying assumptions here are that:
-
SDUs associated with Count value less than the one received may still follow (if missing);

-
SDUs kept stored at this stage will eventually be delivered to higher layer as part of the “regular” branch.
2.2
Validity of different assumptions in bearer split
In this section, we focus on continuous (at least on the part of the MeNB) downlink operation with bearer split configured, and discuss whether different assumptions can be relied on in reordering by PDCP at the UE.

Assumption 1:
For every Count value, an associated SDU is eventually received.
(This would imply that PDCP could keep applying the current RLC-reset branch.)

This is naturally not true with UM bearers.
For AM bearers this would require at least that:

1.
MeNB does not discard (before confirmed reception) already-numbered PDCP SDUs, and
2.
X2 provides reliable delivery, or MeNB PDCP re-transmits PDUs based on missing UE-ACK notifications from SeNB; and
3.
situations following a handover without forwarding are properly dealt with.

Not being able to discard numbered PDUs at the MeNB implies delay to making the discard appear to TCP at the UE, since it is useful for MeNB to cipher SDUs well in advance.

Whenever relying on Assumption 1 when not true (such as following a MeNB handover without forwarding), a deadlock would result where the PDCP at UE ceases to deliver anything to higher layer.
The currently specified PDCP operation, despite its restriction to a single peer eNB and RLC, does not rely on this assumption.

Proposal 1: for reordering at PDCP configured for bearer split, Assumption 1 is not valid.
Assumption 2:
For an SDU associated with given Count received from SeNB, an SDU associated with lower Count will no longer be received from MeNB
(This would be a pre-requisite for applying the current RLC-reset branch with SDUs received from MeNB and “regular” branch with SDUs received from SeNB.)
It seems difficult to claim that this would always hold: both the X2 delay and the scheduling delay at SeNB can also be very short at times, even typically so shortly after bearer split is configured. On the other hand, the HARQ/ARQ retransmissions at MeNB can take some time.
Whenever relying on this assumption when not true, a PDCP PDU received from MeNB would end up discarded and TCP (if in use) would slow down, both for no good reason.

Proposal 2: for reordering at PDCP configured for bearer split, Assumption 2 is not valid.
Assumption 3:
For an SDU associated with given Count received from given eNB, an SDU associated with lower Count will no longer be received from the same eNB

While this is a reasonable assumption in legacy operation (apart from RLC re-establishment), when applied to SeNB this would require that X2 provide ordered delivery. This represents a new requirement compared to the current S1 and X2 interfaces and is therefore undesirable.
But also when applied to MeNB, this may not hold following an SeNB deconfiguration e.g. at mobility, when the MeNB PDCP may need to retransmit PDCP PDUs previously sent for transmission via the SeNB.
Falsely assuming this would have similar consequences as with Assumption 2.

Proposal 3:
For reordering at PDCP configured for bearer split, Assumption 3 is not valid
Assumption 4:
PDCP SDUs are continuously received via both eNBs

(Combined with Assumption 3, this could be used to apply the “regular” branch only to the minimum, over MeNB and SeNB, of the greatest SDU Count received so far.)
This seems like a too stringent restriction for the scheduler, either at MeNB or SeNB.
Proposal 4: for reordering at PDCP configured for bearer split, Assumption 4 is not valid
2.3
Concluding proposal

Given our conclusion with each of the assumptions listed above, it seems that for split bearers, both when mapping on RLC-AM and on RLC-UM, the reordering at PDCP needs to function like it currently does in RLC UM, in that a reordering timer is started when a gap among the SNs of received PDUs is observed, and that gap is ignored in delivery of SDUs to higher layer when the timer expires.
Proposal 5: for split bearers in downlink, both when mapping on RLC-AM and on RLC-UM, a gap observed at PDCP among the SNs of received PDUs is ignored in delivery of SDUs to higher layer based on a reordering timer.
3
Conclusion
In this contribution, we focused on downlink operation of a split bearer and discussed whether different assumptions can be relied on in reordering by PDCP at the UE. We concluded with the following.

Proposal 1-4: for reordering at PDCP configured for bearer split, none of the following assumptions is valid:
1.
For every Count value, an associated SDU is eventually received.

2.
For an SDU associated with given Count received from SeNB, an SDU associated with lower Count will no longer be received from MeNB
3.
For an SDU associated with given Count received from given eNB, an SDU associated with lower Count will no longer be received from the same eNB

4.
PDCP SDUs are continuously received via both eNBs

Proposal 5: for split bearers in downlink, both when mapping on RLC-AM and on RLC-UM, a gap observed at PDCP among the SNs of received PDUs is ignored in delivery of SDUs to higher layer based on a reordering timer.

In the following Appendix, we provide a text proposal introducing such a reordering timer to PDCP over AM, and reordering window and reordering timer to PDCP over UM. We note that like the reordering windows in the current PDCP and RLC specifications, we assume that the window for PDCP over AM is pushed by Last_Submitted_PDCP_RX_SN, whereas the window for PDCP over UM is pulled by Next_PDCP_RX_SN.
But before agreeing on the text proposal as such, it seems that the following needs to be discussed in RAN2:

Proposal 6: RAN2 to discuss whether also UM-bearer splitting is to be supported.

Appendix

Beginning of Text Proposal

5.1.2.1.2b
Procedures for DRBs mapped on two RLC AM entities [change marks compared to current section 5.1.2.1.2 Procedures for DRBs mapped on RLC AM]
For DRBs mapped on RLC AM, at reception of a PDCP Data PDU from lower layers, the UE shall:
-
if received PDCP SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 0 <= Last_Submitted_PDCP_RX_SN – received PDCP SN < Reordering_Window:

-
if received PDCP SN > Next_PDCP_RX_SN:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-
else:
-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;

-
perform header decompression (if configured) as specified in the subclause 5.5.5;

-
discard this PDCP SDU;

-
else if Next_PDCP_RX_SN – received PDCP SN > Reordering_Window:

-
increment RX_HFN by one;

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
else if received PDCP SN – Next_PDCP_RX_SN >= Reordering_Window:

-
use COUNT based on RX_HFN – 1 and the received PDCP SN for deciphering the PDCP PDU;

-
else if received PDCP SN >= Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
if Next_PDCP_RX_SN is larger than Maximum_PDCP_SN:

-
set Next_PDCP_RX_SN to 0;

-
increment RX_HFN by one;

-
else if received PDCP SN < Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
if the PDCP PDU has not been discarded in the above:
-
perform deciphering and header decompression (if configured) for the PDCP PDU as specified in the subclauses 5.6 and 5.5.5, respectively;
-
if a PDCP SDU with the same PDCP SN is stored:

-
discard this PDCP SDU;

-
else:

-
store the PDCP SDU;

-
if received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN:

-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP SDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if reorderingTimer is running:

-
if VRX_PDCP_RX_SN = Last_Submitted_PDCP_RX_SN + 1 or
VRX_PDCP_RX_SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN or
VRX_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or
0 <= Last_Submitted_PDCP_RX_SN – VRX_PDCP_RX_SN < Reordering_Window
:

-
stop and reset reorderingTimer;
-
if reorderingTimer is not running (includes the case when reorderingTimer is stopped due to actions above):

-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN
:
-
start reorderingTimer;
-
set VRX_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set VRX_RX_HFN to RX_HFN.
5.1.2.1.2b.1
Actions when reorderingTimer expires
When reorderingTimer expires, the UE shall:

-
deliver to upper layers in ascending order of the associated COUNT value:
-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value {VRX_RX_HFN, VRX_PDCP_RX_SN};

-
all possibly stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value {VRX_RX_HFN, VRX_PDCP_RX_SN};
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN
:
-
start reorderingTimer;
-
set VRX_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set VRX_RX_HFN to RX_HFN.
[...]
5.1.2.1.3b
Procedures for DRBs mapped on two RLC UM entities [change marks compared to current section 5.1.2.1.3 Procedures for DRBs mapped on RLC UM]
For DRBs mapped on RLC UM, at reception of a PDCP Data PDU from lower layers, the UE shall:

-
if 0 <= received PDCP SN – Next_PDCP_RX_SN < Reordering_Window or
Next_PDCP_RX_SN – received PDCP SN > Reordering_Window
:

-
if received PDCP SN < Next_PDCP_RX_SN:

-
increment RX_HFN by one;

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1
;

-
if Next_PDCP_RX_SN > Maximum_PDCP_SN:

-
set Next_PDCP_RX_SN to 0;

-
increment RX_HFN by one;

-
deliver to upper layers in ascending order of the associated COUNT value:
-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value
{RX_HFN, Next_PDCP_RX_SN} - Reordering_Window;

-
if 0 <= VRUR_PDCP_RX_SN – Next_PDCP_RX_SN < Reordering_Window or
Next_PDCP_RX_SN – VRUR_PDCP_RX_SN > Reordering_Window
:

-
set {VRUR_RX_HFN, VRUR_PDCP_RX_SN} to {RX_HFN, Next_PDCP_RX_SN} - Reordering_Window;

-
else if received PDCP SN – VRUR_PDCP_RX_SN > Reordering_Window or
0 < VRUR_PDCP_RX_SN – received PDCP SN < Reordering_Window
:

-
if received PDCP SN > Next_PDCP_RX_SN:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-
else:
-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;

-
perform header decompression (if configured) as specified in the subclause 5.5.5;

-
discard this PDCP SDU;

-
else if received PDCP SN – Next_PDCP_RX_SN >= Reordering_Window:

-
use COUNT based on RX_HFN – 1 and the received PDCP SN for deciphering the PDCP PDU;

-
else if received PDCP SN < Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
if the PDCP PDU has not been discarded in the above:
-
perform deciphering and header decompression (if configured) for the PDCP PDU as specified in the subclauses 5.6 and 5.5.5, respectively;
-
if a PDCP SDU with the same PDCP SN is stored:

-
discard this PDCP SDU;

-
else:

-
store the PDCP SDU;

-
if a PDCP SDU with PDCP SN = VRUR_PDCP_RX_SN is stored:

-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value {VRUR_RX_HFN, VRUR_PDCP_RX_SN};
-
set {VRUR_RX_HFN, VRUR_PDCP_RX_SN} to the COUNT value following the COUNT value associated with the last PDCP SDU delivered to upper layers.
-
if reorderingTimer is running:

-
if 0 < VRX_PDCP_RX_SN – Next_PDCP_RX_SN < Reordering_Window or
Next_PDCP_RX_SN – VRX_PDCP_RX_SN > Reordering_Window
or
VRX_PDCP_RX_SN – VRUR_PDCP_RX_SN > Reordering_Window or
0 <= VRUR_PDCP_RX_SN – VRX_PDCP_RX_SN < Reordering_Window
:

-
stop and reset reorderingTimer;
-
if reorderingTimer is not running (includes the case when reorderingTimer is stopped due to actions above):

-
if 0 < Next_PDCP_RX_SN - VRUR_PDCP_RX_SN <= Reordering_Window or
VRUR_PDCP_RX_SN - Next_PDCP_RX_SN > Reordering_Window
:
-
start reorderingTimer;
-
set VRX_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set VRX_RX_HFN to RX_HFN.
5.1.2.1.3b.1
Actions when reorderingTimer expires
When reorderingTimer expires, the UE shall:

-
deliver to upper layers in ascending order of the associated COUNT value:
-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value {VRX_RX_HFN, VRX_PDCP_RX_SN};

-
all possibly stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value {VRX_RX_HFN, VRX_PDCP_RX_SN};
-
set {VRUR_RX_HFN, VRUR_PDCP_RX_SN} to the COUNT value following the COUNT value associated with the last PDCP SDU delivered to upper layers.
-
if 0 < Next_PDCP_RX_SN - VRUR_PDCP_RX_SN <= Reordering_Window or
VRUR_PDCP_RX_SN - Next_PDCP_RX_SN > Reordering_Window
:
-
start reorderingTimer;
-
set VRX_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set VRX_RX_HFN to RX_HFN.
[...]
7
Variables, constants and timers

7.1
State variables
This sub clause describes the state variables used in PDCP entities in order to specify the PDCP protocol.
All state variables are non-negative integers.
The transmitting side of each PDCP entity shall maintain the following state variables:

a)
Next_PDCP_TX_SN

The variable Next_PDCP_TX_SN indicates the PDCP SN of the next PDCP SDU for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_TX_SN to 0.

b)
TX_HFN

The variable TX_HFN indicates the HFN value for the generation of the COUNT value used for PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set TX_HFN to 0.

The receiving side of each PDCP entity shall maintain the following state variables:

c)
Next_PDCP_RX_SN

The variable Next_PDCP_RX_SN indicates the next expected PDCP SN by the receiver for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_RX_SN to 0.

d)
RX_HFN

The variable RX_HFN indicates the HFN value for the generation of the COUNT value used for the received PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set RX_HFN to 0.

e) Last_Submitted_PDCP_RX_SN

For PDCP entities for DRBs mapped on RLC AM the variable Last_Submitted_PDCP_RX_SN indicates the SN of the last PDCP SDU delivered to the upper layers. At establishment of the PDCP entity, the UE shall set Last_Submitted_PDCP_RX_SN to Maximum_PDCP_SN.
f) VRX_PDCP_RX_SN

For PDCP entities for DRBs mapped on two RLC entities the variable VRX_PDCP_RX_SN indicates the PDCP SN following the PDCP SN of the PDCP Data PDU which triggered reorderingTimer.
g) VRX_RX_HFN

For PDCP entities for DRBs mapped on two RLC entities the variable VRX_RX_HFN indicates the HFN value of the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered reorderingTimer.
h) VRUR_PDCP_RX_SN

For PDCP entities for DRBs mapped on two RLC UM entities the variable VRUR_PDCP_RX_SN indicates the value of the PDCP SN of the earliest PDCP Data PDU that is still considered for reordering. At establishment of the PDCP entity, the UE shall set VRUR_PDCP_RX_SN to 0.
i) VRUR_RX_HFN
For PDCP entities for DRBs mapped on two RLC UM entities the variable VRUR_RX_HFN indicates the HFN value of the COUNT value associated with the earliest PDCP Data PDU that is still considered for reordering. At establishment of the PDCP entity, the UE shall set VRUR_RX_HFN to 0.
7.2
Timers

The transmitting side of each PDCP entity for DRBs shall maintain the following timers:

a) discardTimer
The duration of the timer is configured by upper layers [3]. In the transmitter, a new timer is started upon reception of an SDU from upper layer.
The receiving side of each PDCP entity for DRBs mapped on two RLC entities shall maintain the following timers:

b) reorderingTimer
The duration of the timer is configured by upper layers [3]. This timer is used to detect loss of PDCP PDUs (see sub clauses 5.1.2.1.2b and 5.1.2.1.3b). If reorderingTimer is running, reorderingTimer shall not be started additionally, i.e. only one reorderingTimer per PDCP entity is running at a given time.
7.3
Constants

a) Reordering_Window

Indicates the size of the reordering window. The size equals to 2048 when a 12 bit SN length is used, or 16384 when a 15 bit SN length is used, i.e. half of the PDCP SN space, for radio bearers that are mapped on RLC AM or on two RLC entities.

b) Maximum_PDCP_SN is:

-
32767 if the PDCP entity is configured for the use of 15 bits SNs

-
4095 if the PDCP entity is configured for the use of 12 bit SNs

-
127 if the PDCP entity is configured for the use of 7 bit SNs

-
31 if the PDCP entity is configured for the use of 5 bit SNs

End of Text Proposal

�Different cases of the general condition Last_Submitted_PDCP_RX_SN >= VRX_PDCP_RX_SN – 1

�Latter condition is the wraparound-case of the former

�Latter condition is the wraparound-case of the former

�If the PDU falls outside the reordering window

�Pull the reordering window

�If VRUR_PDCP_RX_SN falls outside the reordering window

�If the PDU SN has been passed by VRUR_PDCP_RX_SN

�Same steps as in 5.1.2.1.2

�Same steps as in 5.1.2.1.2

�If VRX_PDCP_RX_SN falls outside the reordering window and does not equal Next_PDCP_RX_SN (cf. RLC UM)

�VRUR_PDCP_RX_SN has reached VRX_PDCP_RX_SN or gone past (cf. RLC UM)

�Latter condition is the wraparound-case of the former

�Latter condition is the wraparound-case of the former

