3GPP TSG-RAN WG2 Meeting #85
R2-140355
Prague, Czech Republic, 10 – 14 February 2014
Agenda item:

7.2.1
Source:
Broadcom Corporation
Title:
PDCP re-ordering with split bearers
Document for:

Discussion
1
Introduction
The study item report of small cell enhancement [1] requires that the PDCP is required to take care of reordering the received PDCP PDUs before submitting the SDUs to the upper layers in Architecture 3C.
Reordering is needed, because the two parallel RLC entities below the PDCP cannot guarantee in-sequence delivery of the PDCP PDUs. Although each RLC entity guarantees in-sequence delivery on each transmission leg, the two legs are independent of each other. As the transmission delay through the MAC HARQ and RLC ARQ is variable, the receiving DPCP will often encounter temporary sequence number gaps. These temporary gaps will usually be quickly filled when the slower leg will get all pieces of the data delivered to the PDCP.

Sometimes, though not so frequently, there will also be non-temporary gaps in the chain of sequence numbers. They may be caused by

· The sending peer PDCP entity when it discards PDUs due to the expiry of the discardTimer
· Data loss in the X2 interface between the MeNB and SeNB

· One of the RLC entities hitting the maximum number of retransmissions.

As the gaps of this nature will not get filled just by waiting, other procedures are required.
This document discusses the details of the reordering and proposes new procedures to the PDCP specification [2].
2
Discussion
2.1
Reordering timer
In principle, the RLC layer guarantees in the RLC AM that every RLC SDU will eventually be delivered to the PDCP as long as the link exists. If the maximum number of retransmission is achieved, it means in practise that a radio link failure has occurred. Therefore, the is no immediate need to back up the delivery of the PDCP SDUs to the upper layers by using a reordering timer to flush the reception buffer in a case where a gap in the PDU sequence is not filled in a reasonable time. Naturally, a timer is necessary to avoid a deadlock in the extreme cases, but the timer need not be designed for normal operation, but only to guarantee packet delivery also in the extreme situations. Consequently, a rather simple timer procedure is sufficient for logical channels using RLC AM.

The situation is slightly different with the logical channels using RLC UM, because any RLC SDU may be dropped on the way and never be delivered to the PDCP. The reordering timer on those logical channels should be designed so that the operation reflects this nature. On the other hand, the RLC UM would typically be used for services that don’t require in-sequence delivery (UDP or RTP). However, the PDCP has provided in-sequence delivery since Release 8 up to Release 11 and it might be dangerous to remove it suddenly in Release 12. Therefore, using the reordering timer for logical channels using RLC UM would be a safe choice. Like above, a rather simple timer procedure will be sufficient.

Proposal 1: Introduce reordering timer to the PDCP reordering procedures.

The timer would obviously be started when there is a gap in the sequence of the PDCP PDUs. A very sophisticated timer procedure would start a new timer each time a new gap is seen, but that would require possibly quite a large number of timers. Hence, the simpler procedure would be based on the principle that a new gap in the PDU sequence would not cause any actions if the reordering timer is already running.

As PDCP PDUs are being received from two RLC entities on each logical channel, the timer should not be started before the PDCP has handled all the RLC PDUs that have been received at the same time (within the same TTI). If this convention were not applied, the timer would often be started unnecessarily when the missing PDUs are actually available in some local buffer.
Proposal 2: Start the reordering timer when a gap in the PDCP PDU sequence is present after all RLC PDUs received within the same TTI have been processed if the timer is not already running.

When the timer expires, some part of the reordering buffer shall be flushed to the upper layer even if the gap has not been filled. If there are other gaps in the buffer, it is not good to flush the whole buffer, because some of the gaps may have been created quite recently. The simplest solution would be to flush the buffer up to the next gap and restart the timer, but that would lead to very slow data transmission if there are a lot of gaps in the buffer, because just one gap would be cleared each time the timer expires. A rather simple solution to this problem is to introduce a variable which marks the last PDU in the buffer each time the timer is started and, when the timer expires, the buffer is flushed up to that PDU and naturally also any in-sequence PDUs after that point. Let’s call this varaible EndOfFlush. This arrangement guarantees that no PDU will reside in the buffer more than about two times the expiration time of the reordering timer. This helps in keeping the response times for the possible upper layer retransmissions (TCP, for instance) at a sensible level.

Proposal 3: When the reordering timer is started, mark the last PDU in the reordering buffer with a variable EndOfFlush.

Proposal 4: When the reordering timer expires, flush the reordering buffer up to the variable EndOfFlush and any in-sequence PDUs thereafter.

It must be taken care that the variable EndOfFlush is kept inside the reordering buffer, so it must be incremented if the start of the buffer is about to pass it when gaps filled and data is delivered to the upper layer. Naturally, the variable EndOfFlush will not be advanced over a gap in the reordering buffer, because the start of the buffer will not move in such a case. The variable need not be updated when the reordering timer is not running, because the value of the variable is used only when the timer expires.
Proposal 5: The variable EndOfFlush is incremented if it is about to get outside the reordering buffer when the reordering timer is running.

The reordering timer naturally will need to be restarted and the variable EndOfFlush needs to be set again if there still are gaps in the buffer after the flush. In practice, this means that the flush did not get the buffer empty.

Proposal 6: The reordering timer is restarted and the variable EndOfFlush is set to the last PDU in the buffer if the flush did not empty the buffer.
It is naturally not useful to keep the timer running when there are not gaps in the reordering buffer. In practice, it means that the reordering buffer is empty as all blocks can be forwarded to the upper layer in such a case. Neither it is necessary to keep the variable EndOfFlush updated in the way described above when the reordering timer is not running, because it is needed only when the timer expires and it is set every time the timer is started.

Proposal 7: The reordering timer is stopped if the buffer becomes empty.

Proposal 8: It is not necessary to update the variable EndOfFlush when the reordering timer is not running.
To illustrate the operation of the reordering timer and the variable EndOfFlush, an example is given below. The PDCP reordering buffer status is presented in the figures below, first after all the received RLC PDUS have been precessed and the after the PDCP SDUs that should be delivered to the upper layer have been delivered. The numbers in the boxes are the PDCP sequence numbers. Colored boxes are received PDCP PDUs and white boxes are missing PDUs. The value of variable EndOfFlush is represented by indicating the PDU where the value refers to. If the EndOfFlush-box is missing, the value of the variable EndOfFlush is not set or its value is irrelevant. The consequtive figures represent a continuous sequence of events.

[image: image1]
Figure 1. A gap is present after the reception due to longer delay in the other eNB, so the timer is started.

[image: image2]
Figure 2. The gaps that were present in Figure 1 have been filled, so the timer can be stopped and all data is delivered to the upper layer.
It is important to keep in mind that the sequence of events represented in Figures 1 and 2 is the normal way of operation, covering probably much more than 99 % of the cases. The other sequences of events below occur rather infrequenly.

[image: image3]
Figure 3. PDU with SN=22 was lost in the X2 interface, so the resulting gap will not get filled in the subsequent figures. Normal measures are taken here due to the gap.

[image: image4]
Figure 4. Some more PDUs are received while waiting for SN=22. New gap with SN=28 is created due to the delay difference between the legs. No blocks can be delivered to the upper layer. The timer is already running, so it is not touched.

[image: image5]
Figure 5. Before the timer expires, some new data is received, the gap with SN=28 is filled, a new gap with SN=31 is created. When the timer expires, the PDUs up to EndOfFlush and all in-sequence PDUs after that are delivered to the upper layer. The timer is restarted due the remaining gap and variable EndOfFlush is set.
2.2
Reordering window
The simulation results in the study item report [1] suggest that the transmission delay difference between the MeNB and SeNB may sometimes be close to 150 ms with RLC AM. Occasionally, the difference may be clearly larger for various reasons. The most probable cause might be that there is temporary congestion in one of the eNBs and the grants and resource allocations are delayed due to other traffic. It is thus possible that the reordering timer needs to have a larger value than this in practice. On the other hand, it should have as short expiration time as possible to guarantee a short transmission delay and enable quick upper layer retransmissions (by the TCP/IP, for instance). Keeping this in mind, let’s use 150 ms as a working assumption for the analysis below.

The maximum PDCP reordering window size for RLC AM is 16384. If we assume that the PDCP SDU size is typically 1500 bytes, we can easily determine that the maximum amount of data that fits into the PDCP reordering buffer is 24.6 Mbytes. If we assume that this amount of data will get to the reordering buffer in 150 ms, the corresponding data rate would be 1.31 Gbit/s. This seems sufficient for a single bearer.

As there are no RLC retransmissions in the RLC UM, the delay difference cannot be equally high. Without any particular basis, let’s assume that the difference can be up to 50 ms. According to the present PDCP specification, the maximum reordering window for RLC UM is 2048. With the same assumptions as above, this can hold 3.1 Mbytes of data and filling the buffer in 50 ms corresponds to the data rate of 492 Mbit/s. Also this seems sufficient for a single bearer. 
If the delays are doubled to 300 ms for AM and 100 ms for UM, the supported data rates for a single bearer drop to 655 Mbit/s and 246 Mbit/s.

If these are considered insufficient, it is rather easy to modify the PDCP specification so that the 15-bit SN, which is now specified to be available to RLC AM only, can also be used for RLC UM.
As a final remark, it can be said that the higher the data rates are, the less congestion and scheduling resrictions there are in the eNB. There will also be less MAC HARQ and RLC ARQ retransmissions and thus the difference between the delays of the two transmission path will be smaller. Hence, the reordering buffer will contain much less data on the average when the data rates are higher. Hence, the calculations above are rather pessimistic than optimistic for the very high data rates.
Proposal 9: RAN2 should discuss whether the maximum practical data rates estimated above are sufficient for each bearer or whether PDCP SN range should be extended.
2.3
Configurability

The reason to have reordering in the PDCP comes from the fact that the data transmission delay through MAC HARQ and RLC ARQ is variable, so the PDCP PDUs may arrive out of sequence from the two RLC entities if the bearers are split. This also means that reordering is not needed on those bearers which are not split. Only the network can have knowledge about the RLC, MAC, and physical layer parameters and the characteristics of the network packet scheduler and grant policy. Consequently, the reordering function should be made configurable and the configuration must be separate for each logical channel.

Determining the optimal value of the PDCP reordering timer is not a trivial task. The primary target is that the timer should expire as fast as possible to quickly resolve the persistent gaps caused by X2 transmission errors and sending PDCP discards. On the other hand, the timer expiration should not be too fast, because it is not desirable to deliver data containting gaps that are of temporary nature, i.e. caused by different delays in the MAC HARQ and RLC ARQ. This is another reason for making it configurable by the network.

The range of the timer expiration time need not be higher than the expiration time of the PDCP discardTimer. It is clear that waiting longer than that does not make sense, because that would often result in delivering data that already has expired. The lower limit of the reordering timer value range is somewhere near the duration of a few HARQ retransmissions and the minimum X2 delay.
As discussed in chapter 2.1, reordering might not always be necessary with logical channels using RLC UM, so it would be useful to have it also configurable not to be used even if the bearer were split.

Proposal 10: The use of PDCP reordering and the reordering timer value should be configurable for each logical channel separately.
Proposal 11: The configurable range of the PDCP reordering timer values should be from a few tens of milliseconds to the value of the PDCP discardTimer, or a few seconds if the discardTimer is set to infinity.
2.4
Retransmissions

If the difference in the transmission delays via MeNB and SeNB are extremely large, it sometimes may happen that the PDCP discards a packet. In principle, it would be possible to have a retransmission protocol in the PDCP. A light retransmission protocol has actually been specified for the PDCP and is used in the re-establishment procedures. However, we do not consider it a viable approach. The need to have an ARQ in the PDCP is rather small, because there will be an upper player protocol, such as TCP, above the PDCP. The end result will be almost the same as with some kind of PDCP ARQ. Introducing an ARQ in PDCP would also require that the PDUs are not deleted in the transmitting PDCP when the RLC acknowledges them as delivered over the air interface. Hence, retransmissions in the PDCP shall not be supported in the normal operation of dual connection. Naturally, this does not prevent using the PDCP retransmissions when re-establisment is requested by the RRC.
Proposal 12: The retransmission procedures specified for the PDCP re-establishment procedures are not used in the normal dual connection user plane operation.
3
Conclusion
To enable efficient userplane operation in architecture 3C we propose following functionality to be added to PDCP. Detailed work could then continue based on these in Stage-3 CR preparation for PDCP.

Proposal 1: Introduce reordering timer to the PDCP reordering procedures.
Proposal 2: Start the reordering timer when a gap in the PDCP PDU sequence is present after all RLC PDUs received within the same TTI have been processed if the timer is not already running.

Proposal 3: When the reordering timer is started, mark the last PDU in the reordering buffer with a variable EndOfFlush.

Proposal 4: When the reordering timer expires, flush the reordering buffer up to the variable EndOfFlush and any in-sequence PDUs thereafter.

Proposal 5: The variable EndOfFlush is incremented if it is about to get outside the reordering buffer when the reordering timer is running.

Proposal 6: The reordering timer is restarted and the variable EndOfFlush is set to the last PDU in the buffer if the flush did not empty the buffer.
Proposal 7: The reordering timer is stopped if the buffer becomes empty.

Proposal 8: It is not necessary to update the variable EndOfFlush when the reordering timer is not running.
Proposal 9: RAN2 should discuss whether the maximum practical data rates estimated above are sufficient for each bearer or whether PDCP SN range should be extended.
Proposal 10: The use of PDCP reordering and the reordering timer value should be configurable for each logical channel separately.
Proposal 11: The configurable range of the PDCP reordering timer values should be from a few tens of milliseconds to the value of the PDCP discardTimer, or a few seconds if the discardTimer is set to infinity.
Proposal 12: The retransmission procedures specified for the PDCP re-establishment procedures are not used in the normal dual connection user plane operation.

4
References
[1] TS 36.842 Study on small cell enhancements for E-UTRA and E-UTRAN – Higher layer aspects, version 12.0.0
[2] TS 36.323 Packet Data Convergence Protocol (PDCP) specification, version 11.2.0
After PDU reception





After delivery to upper layer





EndOfFlush





7





8





9

















12





13





14

















12





13





14





Start reordering timer

















After PDU reception





After delivery to upper layer





EndOfFlush





10





11





12





13





14





15





16

















Stop reordering timer





After PDU reception





After delivery to upper layer





EndOfFlush





17





18





19





20





21











23





24





25





26

















23





24





25





26











Start reordering timer





After PDU reception





After delivery to upper layer











23





24





25





26





27











29





30











Reordering timer running





EndOfFlush











23





24





25





26





27











29





30











EndOfFlush





After PDU reception





After delivery to upper layer





EndOfFlush











23





24





25





26





27





28





29





30











32











32











Restart reordering timer





Reordering timer expires











EndOfFlush








