
3GPP TSG RAN WG2 Meeting #77bis
R2-121195
Jeju, Korea, March 26-30, 2012
Source:
CATT
Title:
EAB SIB Design for RAN Sharing
Agenda Item:
5.1.2
Document for:
Discussion and Decision
1. Introduction
During RAN2 #77 meeting, EAB SIB design for RAN sharing was discussed, and the following agreements were reached:

It will be possible to indicate individual EAB parameters per PLMN.

FFS whether it should also be possible to signal a single parameter set applicable to all PLMNs
In this document, we analyze the potential SIB design solutions and compare the overhead of these solutions.
2. Discussion
2.1. Whether it should also be possible to set a single parameter set applicable to all PLMNs?
In the case of RAN overload, the overload level is applicable to all PLMNs, that means in this case RAN only consider its own situation, regardless of PLMN situation. Furthermore, it is beneficial for SIB overhead to broadcast only one parameter set. More important, in RAN2 #75bis, it was already agreed that one set of EAB parameters is sufficient to control RAN overload.
In the case of CN overload, there are some scenarios that all the PLMNs sharing the identical RAN are applied for the same EAB parameters set; so, it is also possible for network to broadcast one EAB parameter set applicable to all PLMNs.
Considering the above cases, we propose:
Proposal1: It is proposed to allow one common EAB parameters set.
2.2. The detailed schemes for EAB SIB design
In this section, we compare the overhead of the potential schemes for EAB SIB design. In order to shorten the length of the document, we put the details of these schemes to Annex 1. And these schemes are displayed as LTE protocol semantics, but also are applicable for UMTS.
2.2.1 Introduction of EAB SIB design schemes
These schemes are all listed in the e-mail report document [2].
Scheme 1: Including PLMN id (24 bits) in each PLMN EAB parameters set

In this solution, EAB configurations with separate PLMN id (24bits) are included. If there is only one PLMN in SIB1 or one common EAB configuration applicable for all PLMNs, then PLMN identity is not needed. It is obviously figured out that 24bit PLMN id is needed and occupied the large bit overhead. This solution is not preferable.

Scheme 2: Setting one separate parameters set for each PLMN (the AC bitmap is all “1” if one PLMN are not applied for EAB)
 In this solution, no PLMN identity is needed because the EAB configurations can be directly mapped to the PLMN identities in SIB1. If barring is not used for certain PLMNs, the bitmap indicates that all access classes are permitted. This structure is very clear, but if a certain PLMN is not applied for EAB, the corresponding EAB parameters are redundancy.
Scheme 2a: Setting one separate parameters set for each PLMN (absent if one PLMN is not applied for EAB)

The basic structure is similar with on scheme 2, and the only difference is that the specific EAB parameter for a PLMN is optional. If one PLMN is not applied for EAB, the corresponding parameter set is absent. With this solution, the bit overhead can be saved.
Scheme 2b: Setting one separate parameters set for each PLMN (with default value)

Based on scheme 2a, one default EAB parameters set is introduced for those PLMNs which apply for same parameters set. Of course, the default parameters set is optional, and it is present at the case that there are two or more PLMNs apply for the same EAB parameters set. Compare to 2a, this solution is beneficial at the case that some PLMNs apply for the same parameters.
Scheme 2c: One bitmap indicates which PLMN this configuration is applied to
Compared to other solution 2 alternatives, a bitmap is added to indicate applied PLMN in solution 2c. When every PLMN has different EAB setting, there is no need to include the bitmap. Basically, this solution is similar with solution 4.
Scheme 3: One bitmap indicates which EAB parameter set each PLMN applies to.

In this solution, one or N EAB configurations are included. The length of bitmap IE ac-BarringExtPLMN-Ind-r11 indicates the number of the PLMN identities in SIB1, and the application of each PLMN EAB is indicated by the bit value “1” in ac-BarringExtPLMN-Ind-r11. N is the number of ones in ac-BarringExtPLMN-Ind.
Scheme 4: One bitmap indicates which PLMN this configuration is applied to.
In this solution, up to six EAB configurations are included. For each EAB configuration it is indicated in a separate bitmap ac-BarringExtPLMN-Ind to which PLMN this configuration applies. This solution can be beneficial when more PLMNs apply for the same parameters.

Scheme 5: Common and specific EAB parameters sets co-exist.
This solution allows to signal a common EAB configuration (e.g. for RAN overload control) and up to 6 PLMN-specific EAB configurations (e.g. for PLMN-specific CN overload control). A UE belonging to a given PLMN will pass the EAB check only if it is not barred by both the common and the PLMN-specific EAB configuration parameters (if present).
2.2.2 Comparison of EAB SIB design schemes
Table 1 and table 2 show the results of the bit overhead comparison of these schemes. The bit overhead of scheme 2b, 2c and 4 can vary with the number of PLMNs which apply for default EAB parameters set; actually, solution 2c is same as solution 4; hence, we split the result into two tables.
Table 1: The bit overhead for the schemes except scheme 2b and 4.
	Nr of PLMNs
	Solution 1
	Solution 2
	Solution 2a
	Solution 3
	Solution 5

	common
	13
	13
	13
	13
	13

	1
	17
	81
	19
	19
	26

	2
	79
	81
	31
	31
	38

	3
	117
	81
	43
	43
	50

	4
	155
	81
	55
	55
	62

	5
	193
	81
	67
	67
	84

	6
	231
	81
	79
	79
	96

Table 2: The bit overhead for the scheme 2b, 2c and 4
(Note: “Nr of default” indicates the number of PLMNs which apply to the default parameters set.)
	
	1
	2
	3
	4
	5

	
	Sol.2b
	Sol.2c/

Sol.4
	Sol.2b
	Sol.2c/

Sol.4
	Sol.2b
	Sol.2c/

Sol.4
	Sol.2b
	Sol.2c/

Sol.4
	Sol.2b
	Sol.2c/

Sol.4

	common
	13
	13
	13
	13
	13
	13
	13
	13
	13
	13

	1
	21
	20/19
	/
	/
	/
	/
	/
	/
	/
	/

	2
	34
	32/31
	22
	20/19
	/
	/
	/
	/
	/
	/

	3
	47
	44/43
	35
	39/38
	23
	20/19
	/
	/
	/
	/

	4
	60
	56/55
	48
	58/57
	36
	39/38
	24
	20/19
	/
	/

	5
	73
	68/67
	61
	77/76
	49
	58/57
	37
	39/38
	25
	20/19

	6
	86
	80/79
	74
	96/95
	62
	77/76
	50
	58/57
	38
	39/38

From the two tables, the following observations can be figured out:
1)
Solutions 1 and 2 have the larger bit numbers at any case.
2)
Solutions 2a, 2b, 2c, 3, 4, 5 have the less overhead generally.
3)
Solution 2a and solution 3 has the exactly same bit numbers

4)
Solution 2b, 2c, 4 are more beneficial when some PLMNs have same parameters.

 From the above observations 1), 2), we can find solutions 1, 2 cause larger bit overhead than other schemes, so from the bit cost perspective, it is proposed:

Proposal1: It is proposed to rule out solution 1, 2 due to the larger bit overhead.

Besides, according the structures of these schemes, solution 2a and 2b seem more clear and readable. Besides, solution 2a, 2b have similar structure with the existing UMTS ACB structure, which is convenient for UE implementation. Furthermore, solution 2b can save some bits at the case that some PLMNs share the same parameter.
Therefore, solution 2b takes the good balance of bit overhead and simplicity, so, we propose:
Proposal 2: It is proposed to take solution 2b as the SIB design.

3. Conclusion
In this contribution, we compare the bit cost of the alternatives for EAB SIB design, and give our proposals:

Proposal1: It is proposed to rule out solution 1, 2, 4 due to the larger bit overhead.
Proposal2: It is proposed to take solution 2b as the SIB design.
4. References
[1]. “R2-120463
 EAB information for RAN sharing”; Ericsson, ST-Ericsson, 3GPP TSG RAN WG2 Meeting #77, 6 - 10 February 2012, Dresden, Germany
[2]. “R2-121357 Summary of email discussion [77#21] - Joint: EAB: SIB design for RAN sharing”, Huawei, 3GPP TSG RAN WG2 Meeting #77bis, 26 - 30 March 2012, Jeju, Korea.
5. Annex
Solution 1:
SystemInformationBlockType14-r11 ::= SEQUENCE {

ac-BarringExtInfo-r11

SEQUENCE (SIZE (1..6)) OF AC-BarringExtConfig-r11

OPTIONAL,
-- Need OR

lateNonCriticalExtension

OCTET STRING

OPTIONAL,
-- Need OP

...

}
AC-BarringExtConfig-r11 ::=

SEQUENCE {

plmn-Identity

PLMN-Identity

OPTIONAL,
-- Need OP

ac-BarringExtCat-r11

ENUMERATED {a, b, c, spare},

ac-BarringExt-r11

BIT STRING (SIZE (10))
}
Solution 2:
SystemInformationBlockType14-r11 ::= SEQUENCE {

ac-BarringExtInfo-r11

CHOICE {

ac-BarringExtCommon-r11

AC-BarringExtConfig-r11,

ac-BarringExtPerPLMN-r11

SEQUENCE (SIZE (1..6)) OF
AC-BarringExtConfig-r11

}

OPTIONAL,
-- Need OR

lateNonCriticalExtension

OCTET STRING

OPTIONAL,
-- Need OP

...

}
AC-BarringExtConfig-r11 ::=

SEQUENCE {

ac-BarringExtCat-r11

ENUMERATED {a, b, c, spare},

ac-BarringExt-r11

BIT STRING (SIZE (10))
}
Solution 2a:

SystemInformationBlockType14-r11 ::= SEQUENCE {
 ac-BarringExtInfo-r11 CHOICE {
 ac-BarringExtCommon-r11 AC-BarringExtConfig-r11,

 ac-BarringExtPerPLMN-r11 SEQUENCE (SIZE (1..6)) OF AC-BarringExtConfigPLMN-r11

 } OPTIONAL, -- Need OR

 lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OP

 ...

}

AC-BarringExtConfigPLMN-r11 ::= SEQUENCE {

 AC-BarringExtConfig-r11 OPTIONAL -- Need OR

}

AC-BarringExtConfig-r11 ::= SEQUENCE {

 ac-BarringExtCat-r11 ENUMERATED {a, b, c, spare},

 ac-BarringExt-r11 BIT STRING (SIZE (10))

}

Solution 2b:

SystemInformationBlockType14-r11 ::= SEQUENCE {
 ac-BarringExtInfo-r11 CHOICE {
 ac-BarringExtCommon-r11 AC-BarringExtConfig-r11,

 ac-BarringExtPerPLMN-r11 SEQUENCE {

default-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfig-r11

optional

plmn1-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfigPLMN-r11
optional

plmn2-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfigPLMN-r11
optional

plmn3-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfigPLMN-r11
optional

plmn4-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfigPLMN-r11
optional

plmn5-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfigPLMN-r11
optional

plmn6-AC-BarringExtConfigPLMN-r11
AC-BarringExtConfigPLMN-r11
optional
 } OPTIONAL, -- Need OR

 lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OP

 ...

}

AC-BarringExtConfigPLMN-r11 ::= CHOICE {

 ac-DefaultConfig-r11
NULL

ac-BarringExtConfig-r11 AC-BarringExtConfig-r11

}

AC-BarringExtConfig-r11 ::= SEQUENCE {

 ac-BarringExtCat-r11 ENUMERATED {a, b, c, spare},

 ac-BarringExt-r11 BIT STRING (SIZE (10))

}

Solution 2c:

SystemInformationBlockType14-r11 ::= SEQUENCE {

ac-BarringExtInfo-r11

CHOICE {

ac-BarringExtCommon-r11

AC-BarringExtConfig-r11,

ac-BarringExtPerPLMN-r11

SEQUENCE (SIZE (1..6)) OF
AC-BarringExtConfig-r11

}

OPTIONAL,
-- Need OR

lateNonCriticalExtension

OCTET STRING

OPTIONAL,
-- Need OP

...

}

AC-BarringExtConfig-r11 ::=

SEQUENCE {

ac-BarringExtPLMN-Ind-r11

BIT STRING (SIZE(6))

OPTIONAL,
-- Need OP

ac-BarringExtCat-r11

ENUMERATED {a, b, c, spare},

ac-BarringExt-r11

BIT STRING (SIZE (10))
}
Solution 3:
SystemInformationBlockType14-r11 ::= SEQUENCE {

ac-BarringExtPLMN-Ind-r11

BIT STRING (SIZE(6))

OPTIONAL,
-- Need OP

ac-BarringExtInfo-r11

SEQUENCE (SIZE (1..6)) OF AC-BarringExtConfig-r11

OPTIONAL,
-- Need OR

lateNonCriticalExtension

OCTET STRING

OPTIONAL,
-- Need OP

...

}
AC-BarringExtConfig-r11 ::=

SEQUENCE {

ac-BarringExtCat-r11

ENUMERATED {a, b, c, spare},

ac-BarringExt-r11

BIT STRING (SIZE (10))
}
Solution 4:
SystemInformationBlockType14-r11 ::= SEQUENCE {

ac-BarringExtInfo-r11

SEQUENCE (SIZE (1..6)) OF AC-BarringExtConfig-r11

OPTIONAL,
-- Need OR

lateNonCriticalExtension

OCTET STRING

OPTIONAL,
-- Need OP

...

}
AC-BarringExtConfig-r11 ::=

SEQUENCE {

ac-BarringExtPLMN-Ind-r11

BIT STRING (SIZE(6))

OPTIONAL,
-- Need OP

ac-BarringExtCat-r11

ENUMERATED {a, b, c, spare},

ac-BarringExt-r11

BIT STRING (SIZE (10))
}
Solution 5:
SystemInformationBlockType14-r11 ::= SEQUENCE {

ac-BarringExtCommon-r11

AC-BarringExtConfig-r11

OPTIONAL,
-- Need OR

ac-BarringExtPerPLMN-r11

SEQUENCE (SIZE (1..6)) OF AC-BarringExtConfigPLMN-r11

OPTIONAL,
-- Need OR

lateNonCriticalExtension

OCTET STRING

OPTIONAL,
-- Need OP

...

}

AC-BarringExtConfigPLMN-r11 ::= SEQUENCE {

ac-BarringExtConfig-r11

AC-BarringExtConfig-r11 OPTIONAL -- Need OR

}

AC-BarringExtConfig-r11 ::=

SEQUENCE {

ac-BarringExtCat-r11

ENUMERATED {a, b, c, spare},

ac-BarringExt-r11

BIT STRING (SIZE (10))

}

Nr of

default

Nr of

PLMNs

PAGE
1
R2-121195

