3GPP TSG-RAN WG2 #68
R2-096963
9-13 November 2009
Jeju, Korea
Agenda item:
6.1.2
Source:
Qualcomm Europe

Title:
LPP version number
Document for:
Discussion, Decision
1. Introduction

This document describes the use cases for and possible methods of indicating protocol versions in LPP.

2. Discussion

We take for granted that some form of LPP version number is needed, in order to allow for extensibility – e.g. to enable an E-SMLC to know the protocol capabilities and limitations of a UE and to enable either end to determine if the other end may be using a different and possibly incompatible version of the protocol.
There is no particular reason to tie the LPP version to the release number, as is done for instance with the RRC; although RAN2 “own” the LPP protocol, it is really an application-layer protocol with no intrinsic ties to the access stratum release number. In particular, in case there is a need for bugfixes or extension functionality apart from the “regular” release schedule, it would be good to be able to modify LPP without being tied to the release cycles of other RAN2 specifications.

2.1. Possible solutions

We have identified the following possible means of transmitting version information:

1. Introduce a session concept with the version number negotiated between the endpoints at the beginning of each session;

2. Include the version as a field (optional or mandatory) in each LPP message;

3. Include the version in the UE capability, and do not indicate a version in the downlink direction (similar to what is done today in RRC);

4. Include the version in the UE capability, and introduce a downlink procedure to indicate the version on the network side;

5. Include the version in the UE capability, and as an optional field in all downlink messages, with the proviso that the server should indicate its protocol version in the first message it sends towards a particular UE.

Each of these options has certain implications.

Option 1: Session concept.

This solution is quite flexible, but would introduce a new procedure into LPP for session maintenance; the impact of an additional procedure may not be appealing for implementations, especially if extensions are not expected to be frequent.

Moreover, the new procedure and the maintenance of session state are never useful on the user place, since SUPL provides its own session concept that enables a UE (SUPL SET) to transfer its supported LPP version (in this case the version of the 3GPP LPP spec.) to the server (SUPL SLP) prior to an LPP session. Thus introducing this complexity to LPP would create valueless overhead for SUPL usage, or else would introduce a divergence between the control and user plane instantiations of the protocol; both of which are highly undesirable in a protocol that is intended to be agnostic to its transport.

Option 2: Per-message field.

It seems unnecessary to include the version as a mandatory field in every message; at a minimum, within a single transaction, the two endpoints can probably be assumed to maintain the same version. However, without a session concept, the version might need to be indicated in the first message in each direction of each transaction.

The overhead associated with sending the version number frequently does not seem unreasonable. It might be assumed that this option would make critical extensions impossible; however, see the analysis in section 2.2 for clarification of this point.

Option 3: RRC-like approach, with a version in UE capability and no network version indicator.

This approach is of course quite familiar to RAN2 from the RRC protocol. In the RRC, it has always been considered not to allow critical extensions in the uplink; this restriction has been considered acceptable in the RRC, but it is not obvious that the same principles apply to LPP, where a future extension is quite likely to affect the messages in both directions more or less symmetrically (e.g., introduction of a new position method would add top-level containers to all messages). However, as with option 2, this restriction can be greatly relaxed if a recovery procedure for a version mismatch is included in the error handling.
Option 4: Version indicator in UE capability and in a specific downlink message.

Option 4 is actually quite similar to Option 1, without creating an explicit session concept. In this approach, both the target and server would be expected to indicate their version numbers in an initial exchange of messages, and there would need to be some discussion of when this exchange is required to take place—one possibility would be to have it triggered by the server every time an LCS session is initiated.

As with Option 1, the additional procedure may be undesirable from an implementation standpoint. Like Option 3, this option would mean that there could be no critical extensions to the UE capability indication or to the downlink message that carries the version indicator.

Option 5: Version indicator in UE capability, optional in all downlink messages, and included in the “first” message from the server (where “first” needs to be appropriately defined).

This option is essentially a more flexible version of Option 4; the “first” interaction between target and server needs to be defined, and critical extensions would be impossible in the UE capability indication, for the same reasons as in Option 4. In addition, at least one message in the downlink would have to be non-extensible; this message could be specified as always the first message exchanged (reducing this case to option 4), or a recovery procedure could be specified; in any case, critical extensions would remain available in the uplink, and should also be available in the downlink except for the message used to recover from a mismatch.

2.2. Critical extensions with options 2-5

At first reading, it appears that critical extensions could not be supported in at least some messages under any of options 2-5—as is well known, a message with critical extensions cannot be parsed correctly until the protocol version is known, so at least one message in each direction must be guaranteed to be non-extensible in order to deliver the version number reliably.

However, considering the actual critical extension mechanism in use, this restriction is not as serious as it might appear. Consider a typical critically-extended message (in this case, the Provide Location Information message as it would appear with Rel-10 critical extensions):

ProvideLocationInformation ::= SEQUENCE {

criticalExtensions

CHOICE {

c1

CHOICE {

provideLocationInformation-r9
ProvideLocationInformation-r9-IEs,

provideLocationInformation-r10
ProvideLocationInformation-r10-IEs,

spare2 NULL, spare1 NULL

},

criticalExtensionsFuture
SEQUENCE {}

}

}

Suppose now that this message is encoded according to Rel-10, and received by a Rel-9 decoder. The decoder will consider that the value of the CHOICE is “spare3” and its value should be NULL. There are two possible behaviours: either the decoder will detect the length mismatch and declare a decoding error, or it will consider parsing to be complete since it has populated all the expected fields. Both implementations appear to be valid, and both allow the receiver to detect the problem.

If the decoder declares an error, the obvious behaviour is for the receiver to transmit an Error message, which could contain the receiver’s version number; the transmitter would then be expected to adapt to this version number in future messages. On the other hand, if the decoder exits successfully, the receiver can detect that the CHOICE in the critical extensions branch is set to a spare value; this too should cause an Error transmission containing the receiver’s version number.

In short, if this error case occurs, the receiver can always detect it and trigger a recovery.
Note that population of the criticalExtensionsFuture branch does not affect this conclusion; even if the decoder parses the choice as “spare3” and goes on to assign the wrong bits to the fields in criticalExtensionsFuture, the spare value in the CHOICE will still indicate to the receiver that the transmitter is using a newer protocol version. (In addition, assuming the version number is placed in the common message fields before the ProvideLocationInformation SEQUENCE, such a decoder should see the correct value for the version number itself.)
Note that such an error only occurs when the receiver is using an older release than the sender, but it can occur in either direction; thus the recovery needs to take place through bidirectional messaging such as the error handling, rather than through a unidirectional message (e.g., UE capability indication).

The process of recovery from such an error is shown in Figure 1 (overleaf).

[image: image1.emf]Sender

(Rel-10)

Receiver

(Rel-9)

No version negotiation

Critically extended Rel-10 message

ASN.1 error or

detection of wrong CE

branch/version ID

Error message with Rel-9 indicator

Change to Rel-9

operation

Retransmit message in Rel-9 version

Figure 1: Negotiation of version number after an error

It seems clear that such a recovery mechanism is required for any solution that does not rely on explicit version negotiation with a known scope, i.e., on introducing a session concept.

Note also that, unlike the introduction of the session concept in option 1, this recovery does not introduce new messaging or a new class of procedures into LPP; it uses existing messaging and the error-handling mechanisms that must be implemented anyway. In other words, this handling is essentially zero-cost for implementation, and has minimal impact on standardisation. Accordingly, our evaluation below of alternatives 2-5 assumes that this recovery would always be available.
Interestingly, given the recovery mechanism described, it does not immediately appear necessary to provide a version indicator at all, apart from the branch taken in the critical extensions! However, in case of messages that are not critically extended in every release, the critical extension CHOICE by itself does not indicate the version number; moreover, providing an “in-band” version number as part of the common header material makes it more likely that a decoder can determine the correct version number from a message that was parsed successfully, without needing to wait for an actual error to occur.

2.3. Comparison
The following table compares the options.
	
	Description
	Spec impact
	Critical extensions
	Other

	1
	Session negotiation
	Introduction of a session concept for control-plane only; new procedures for session start (including version negotiation) and end
	Possible everywhere except in session-start messaging
	Causes C- and U-plane divergence

	2
	Version indicator per message
	Inclusion of field in ASN.1
	Possible except in Error messages
	Simplest alternative

	3
	UE version indicator in capability; no indicator in downlink
	Inclusion of field in ASN.1
	Possible in downlink, and in all uplink messages except Error
	Closest resemblance to RRC

	4
	UE version indicator in capability; network version in a specific downlink message
	New procedure for network version indication; possible need to capture when the version is indicated
	Possible except in UE capability and the message that contains network version
	No advantage over options 2 and 3 identified

	5
	UE version indicator in capability; network version optional in all downlink messages
	Need to capture when version is exchanged; possible need to introduce a session concept as in #1
	Possible in uplink except for UE capability, and in downlink except for Error message
	No advantage over options 2 and 3 identified

We suggest that Option 1 can be eliminated from consideration on grounds of its complexity and the introduction of divergent behaviour between the control-plane and SUPL solutions, and that options 4 and 5 can be eliminated since they seem to offer no advantage over options 2 and 3.

Between options 2 and 3, the grounds for comparison are limited. However, unlike the RRC, LPP is a relatively symmetrical protocol; the implicit assumption of the RRC that the network side is always “smarter” than the mobile side does not really apply in the LCS layer, where a special-purpose application in the UE is communicating with its counterpart in the server. Thus we favour the more symmetrical and slightly simpler option 2.
3. Conclusion
We propose that RAN2 adopt option 2 as described above, in which the LPP version is optional to indicate in all messages, and a receiver that detects a version mismatch responds with an error message indicating its protocol version.
