3GPP TSG-RAN WG2 #62bis

 R2-083200
30th June – 4th July 2008
Warsaw, Poland

Agenda item:

6.1.3.2
Source:
LG Electronics Inc.
Title:
Introduction of modular operation in PDCP
Document for:

Discussion and Decision

1.
Introduction
So far, arithmetic operations in PDCP specification have been on an absolute value basis, not on a modular basis. Though the absolute value operation does not cause any technical problems, it sometimes causes readability problems. The main problem lies in the section 5.5.1.2.1, where a couple of state variables are compared as absolute values, which makes it difficult to understand the conditions and behaviours.

Thus, to simplify the section 5.5.1.2.1, we propose to introduce modular concept in PDCP like in RLC.

2.
Analysis of section 5.5.1.2.1
The section 5.5.1.2.1 specifies the handling of PDCP PDUs when the Flush_Timer is running. While the Flush_timer is running, the received PDCP Sequence Number could range all the values in sequence number space theoretically. Therefore, to deal with any values of PDCP Sequence Numbers, there are lots of conditions specified. Let’s look into each condition in detail.

When a PDCP PDU associated with a PDCP Sequence Number is received from lower layers the UE shall:

-
if received PDCP Sequence Number – Last_Submitted_PDCP_RX_SN > Reordering_Window or

[image: image15.wmf]0

LAST

NEXT

0

0

Cond

3

RSN

0

 0 <= Last_Submitted_PDCP_RX_SN – received PDCP Sequence Number < Reordering_Window:

[image: image2.emf]0 RSN LAST NEXT

[1-2]

0 0

-
if received PDCP Sequence Number > Next_PDCP_RX_SN:

[image: image3.emf]RSN 0 LAST NEXT

[1-3]

LAST

-
decipher the PDCP PDU according to 5.3, using COUNT based on the value of the variable RX_HFN - 1 and the value of the PDCP Sequence Number contained in the SN field of the PDCP PDU header;

-
else

[image: image4.emf]0 RSN NEXT

[1-4]

LAST 0

-
decipher the PDCP PDU according to 5.3, using COUNT based on the value of the variable RX_HFN and the value of the PDCP Sequence Number contained in the SN field of the PDCP PDU header;

-
perform header decompression, if configured as specified in 5.2.5;

-
discard this PDCP SDU;

-
else if Next_PDCP_RX_SN – received PDCP Sequence Number > Reordering_Window:

[image: image5.emf]LAST NEXT 0 RSN

[2]

-
increment the variable RX_HFN by one;

-
use the COUNT based on the value of the variable RX_HFN and the received PDCP Sequence Number contained in the PDCP SN field for deciphering the PDCP PDU;

-
set the variable Next_PDCP_RX_SN to received PDCP Sequence Number + 1;

-
else if received PDCP Sequence Number – Next_PDCP_RX_SN > Reordering_Window:

[image: image6.emf]LAST RSN 0 NEXT

[3]

-
use the COUNT based on the value RX_HFN – 1 and the received PDCP Sequence Number contained in the PDCP SN field for deciphering the PDCP PDU;

-
else if received PDCP Sequence Number >= Next_PDCP_RX_SN:

[image: image7.emf]LAST 0 LAST NEXT

[4]

RSN 0

-
use the COUNT based on the value of the variable RX_HFN and the received PDCP Sequence Number contained in the PDCP SN field for deciphering the PDCP PDU;

-
set the variable Next_PDCP_RX_SN to received PDCP Sequence Number + 1;

-
if the variable Next_PDCP_RX_SN is larger than the Maximum_PDCP_SN:

-
set the variable Next_PDCP_RX_SN to 0;

-
increment the variable RX_HFN by one;

-
else if received PDCP Sequence Number < Next_PDCP_RX_SN:

[image: image8.emf]LAST 0 LAST RSN

[5]

NEXT 0

-
use the COUNT based on the value of the variable RX_HFN and the received PDCP Sequence Number contained in the PDCP SN field for deciphering the PDCP PDU;
Each of the condition (i.e. “if” clauses) is numbered and graphically shown above. In the added figures, RSN is received PDCP Sequence Number, LAST is Last_Submitted_PDCP_RX_SN, and NEXT is Next_PDCP_RX_SN.

3.
Simplification of the condition
The reason for having that many conditions is that the text tries to list all possible cases considering both PDCP behaviour and HFN update conditions. But if we split the PDCP behaviour and HFN update conditions, and apply the PDCP behaviour condition first, the above text could be much more simplified.
For the PDCP behaviour, only three conditions are relevant, i.e. whether RSN is below the LAST, between LAST and NEXT, or above NEXT. In each case, the UE procedure is given below.

· if RSN <= LAST

· decipher with associated HFN

· decompress

· discard

· if LAST < RSN < NEXT

· decipher with associated HFN

· decompress

· if not duplicate, store
· if duplicate, discard
· if RSN >= NEXT

· decipher with associated HFN

· decompress

· store

· update NEXT
In the above procedure, the “decipher with associated HFN” needs to be further investigated. The associated HFN is related to the update of HFN, which can be achieved by comparison of RSN with 0 together with NEXT. In most cases, RSN has a same HFN value as NEXT, but in the following two cases, the HFN values would be different.
· if RSN < 0 <= NEXT

· use HFN – 1
· if NEXT < 0 <= RSN

· update HFN by 1 and use updated HFN

· Else

· use HFN

Finally, if we combine the two conditions proposed above, the following complete procedure could be obtained. The new formulation is believed to be easily understood by intuition.
· [image: image1.emf]RSN 0 LAST NEXT

[1-1]

if RSN <= LAST

· if RSN < 0 <= NEXT

· use HFN – 1

· Else

· use HFN

· decompress

· discard

· [image: image10.wmf]0

LAST

NEXT

0

0

Cond

3

RSN

0

if LAST < RSN < NEXT

· if RSN < 0 <= NEXT
· use HFN – 1

· Else

· use HFN

· decompress

· if not duplicate, store

· if duplicate, discard

· [image: image11.wmf]0

LAST

RSN

0

0

Cond

2

NEXT

0

if RSN >= NEXT

· if NEXT < 0 <= RSN
· update HFN by 1 and use updated HFN

· Else

· use HFN

· decompress

· store

· update NEXT
Proposal 1) Agree on the new formulation of the conditions.
4.
Modular Operation

For the new formulation to work, a modular operation shall be introduced. That’s because in the new formulation RSN position is classified into three types, i.e. below LAST, between LAST and NEXT, and above NEXT.
To support the modular operation, a modular base shall be defined. The modular base is regarded as the lowest value (i.e. 0) in calculations. Since the reordering window is defined to be half of the PDCP Sequence Number space, we believe NEXT – (Maximum_PDCP_SN + 1) / 2 shall be the modular base. For DRBs mapped on AM, it is same as NEXT – Reordering_Window = NEXT – 2048.

[image: image9.emf]0

NEXT

NEXT

–

(Maximum_PDCP_SN + 1) / 2

Lower than NEXT

Higher than NEXT

In addition, all the state variables (except HFN) shall range from 0 to Maximum_PDCP_SN.
Proposal 2) Agree on the modular operation. The modular base shall be NEXT – (Maximum_PDCP_SN + 1) / 2.
5.
Scope of the Modular Operation

The main target for introducing modular operation is to simplify the text in the section 5.5.1.2.1, i.e. PDCP behaviour for DRBs mapped on AM when Flush_Timer is running. It is possible to make the modular operation to be in use only in this situation. But, then the handling of the same state variable would be different in handover case and normal case.
Therefore, on which scope the modular operation is applied should be decided.

Proposal 3-1) Adopt modular operation throughout the PDCP specification.
Proposal 3-2) Adopt modular operation for DRBs mapped on AM when Flush_Timer is running.
We think it would be better to adopt the modular operation throughout the PDCP specification.
6.
Proposal
To simplify and make more readable of PDCP specification, the followings are proposed.

Proposal 1) Agree on the new formulation of the conditions.

Proposal 2) Agree on the modular operation. The modular base shall be NEXT – (Maximum_PDCP_SN + 1) / 2.

Proposal 3-1) Adopt modular operation throughout the PDCP specification.

Proposal 3-2) Adopt modular operation for DRBs mapped on AM when Flush_Timer is running.

Here, we propose two proposals on the scope of modular operation, though we believe that proposal 3-1 is better. Between proposals 3-1 and 3-2, it is asked for RAN2 group to choose one of them. The proposed CRs based on 3-1 and 3-2 are provided in R2-083201 and R2-083205, respectively.

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

1
1

[image: image12.wmf]0

RSN

LAST

0

0

Cond

1

NEXT

0

[image: image13.wmf]0

RSN

LAST

0

0

Cond

1

NEXT

0

[image: image14.wmf]0

LAST

RSN

0

0

Cond

2

NEXT

0

_1275482045.vsd
0

RSN

LAST

NEXT

[1-2]

0

0

_1275482338.vsd
RSN

0

LAST

NEXT

[1-3]

LAST

_1275483132.vsd
LAST

0

LAST

NEXT

[4]

0

RSN

_1275483155.vsd
LAST

0

LAST

RSN

[5]

NEXT

0

_1275482682.vsd
0

0

RSN

NEXT

[1-4]

LAST

_1275482096.vsd
LAST

RSN

0

NEXT

[3]

_1275410059.vsd
LAST

NEXT

0

RSN

[2]

_1275474158.vsd
0

LAST

NEXT

0

0

Cond 3

RSN

0

_1275476313.vsd
0

NEXT

NEXT – (Maximum_PDCP_SN + 1) / 2

Lower than NEXT

Higher than NEXT

_1275474101.vsd
0

LAST

RSN

0

0

Cond 2

NEXT

0

_1275473976.vsd
0

RSN

LAST

0

0

Cond 1

NEXT

0

_1275410016.vsd
RSN

0

LAST

NEXT

[1-1]

