
5

3GPP TSG-RAN WG2 #61

R2-081064
11-15 February 2008

Sorrento, Italy
Agenda item:
5.1.1.4 QoS
Source:
Qualcomm Europe

Title:
Text Proposal for UL Logical Channel Prioritisation with Segmentation Optimisation
Document for:
Discussion, Decision
1. Introduction

In [2], we propose the detailed logical channel prioritisation procedure for LTE, which uses token bucket mechanism to achieve QoS support.
While the proposal was straight-forward (for simplicity), it requires the UE to serve the logical channels according to very strict rules. We will see in some cases, the procedures may not yield optimal performance.

For example, the prioritisation procedure decides strictly how many bytes a UE shall serve a logical channel. However, it does not take into account segmentation of PDCP PDUs. For instance, if the procedure decides the UE should serve 10 bytes of data from a logical channel, the UE has to serve 10 bytes of data even though the whole PDCP PDU in the corresponding buffer is, say, 500 bytes.

This scenario creates segmentation, which creates inefficiency due to larger overhead introduced by multiple segment headers. Also, it potentially creates longer delay for the delivery of the PDCP PDU since the segments will now be carried on different ARQ processes scheduled at different times.
In this contribution, we explain a scheme that allows flexibility in the UE but still satisfies the QoS requirements. Basically, we propose some changes to the token bucket scheme we proposed in [2] to achieve this optimisation.

2. Discussion

2.1. Issues
Note that only the UE knows the PDCP PDU sizes and boundaries, any scheme will need to support flexibility in the UE to address this issue.

In the example given in section 1, there are at least three possibilities:
Option 0) Allow the UE to transmit only 10 bytes
Option 1)
Allow the UE not to transmit any data from the logical channel until it accumulates enough tokens in the future (remember fresh tokens are added for each TTI)
Option 2) Allow the UE to borrow tokens from future TTI’s and transmit the whole 500 bytes of PDCP PDU (and let the token bucket go negative after the transmission)
Option 0) is very simple but is also strictest. It forces the UE to segment a PDCP PDU. However, this maybe the only option if this is the only logical channel the grant serves and we do not want to waste the grant by sending padding bits.

Option 1) will work well as long as the un-used portion of the grant is used to serve other logical channels. However, if there is only one logical channel, option 1) will create unnecessary delay to the PDCP PDU and wasted grants.

Option 2) will minimize the delay experienced by the PDCP PDU while introducing some temporary inaccuracy to the token bucket metering for this TTI. However, if we limit the borrowing, we could keep the token bucket accurate in the long run. For example, we can allow the token bucket to go negative and forbid the logical channel to borrow more when the bucket is already negative.

Proposal 1: as seen from the above, there is no single option that will work for all cases, we propose to let the UE decides whether or not to segment a PDCP PDU.
Proposal 2: to include option 2), we propose to allow a logical channel to borrow future tokens. Since the tokens it borrows will be counted against its token bucket, the long term throughout will remain unchanged, as specified by the token bucket parameters.
3. Conclusion

We discuss the need to address the segmentation problem during UL logical channel prioritisation and we propose the following:
Proposal 1: let the UE decides whether or not to segment a PDCP PDU.

Proposal 2: allow a logical channel to borrow future tokens. Since the tokens it borrows will be counted against its token bucket, the long term throughout will remain unchanged, as specified by the token bucket.

4. Text Proposal
The following changes are proposed to subclauses 3.1, 5.4.3.1 and 7.1. The changes include the changes proposed in [2]. Only the parts highlighted in cyan are pertaining to the segmentation optimisation proposed in this contribution.
3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [x] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [x].

Definition format

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

MBR Bucket Size: This parameter specifies the maximum amount of bytes that can be contained in a MBR Token Bucket. It is stored in the MBR_BUCKET_SIZE parameter configured by higher layers.
MBR Token Rate: This parameter specifies how many bytes are added to the MBR Token Bucket at every TTI. It is stored in the MBR_TOKEN_RATE parameter configured by higher layers.

PBR Bucket Size: This parameter specifies the maximum amount of bytes that can be contained in a PBR token bucket. It is stored in the PBR_BUCKET_SIZE parameter configured by higher layers.
PBR Token Rate: This parameter specifies how many bytes are added to the PBR Token Bucket at every TTI. It is stored in the PBR_TOKEN_RATE parameter configured by higher layers.

RA-RNTI: The Random Access RNTI is used on the [SCCH] when Random Access Response messages are transmitted. It unambiguously identifies which time-frequency resource was utilized by the UE to transmit the Random Access preamble.
5.4.3.1
Logical channel prioritization

Editor’s note: This subclause describes how MAC SDUs are prioritised and selected from different logical channels.

Editor’s note:
The interaction with the DRX control function is automatically done by checking if an UL grant was received.

The Logical Channel Prioritization procedure shall be applied when a new transmission is performed.
The scheduling of uplink data can be controlled by giving each logical channel a priority where increasing priority values indicate lower priority levels. Each logical channel is configured with a token bucket for the Prioritised Bit Rate (PBR Token Bucket) and optionally, a token bucket for the Maximum Bit Rate (MBR Token Bucket) if configured.
A PBR token bucket is defined for each logical channel with parameters configured by higher layers and additionally a MBR token bucket may also be defined for logical channels with parameters configured by higher layers. The procedures for using the token buckets are described below.
The Logical Channel Prioritization procedure ensures that the UE serves the logical channels in the following sequence:

When a new transmission is requested by the HARQ entity (see subclause 5.4.2.1), the UE shall perform the operations described:
-
Update PBR_Token_Bucket and PBR_Token_Bucket as follows:

-
PBR_Token_Bucket = MIN(PBR_BUCKET_SIZE, PBR_Token_Bucket + PBR_TOKEN_RATE * (number of TTI’s since last update))

-
PBR_Token_Bucket = MIN(MBR_BUCKET_SIZE, MBR_Token_Bucket + MBR_TOKEN_RATE * (number of TTI’s since last update))
-
For each logical channel ordered in a decreasing priority order, perform the following:

-
If ((PBR_Token_Bucket >= UL_Grant) and (UL_Grant >= amount of data buffered for transmission))
-
serve this logical channel up to MIN(amount of data buffered for transmission) bytes,

-
Else
-
If (PBR_Token_Bucket >= 0)
-
Allowed_Extra_Tokens = MIN(MAX(0, UL_Grant – PBR_Token_Bucket) , 0.5 * PBR_BUCKET_SIZE)
-
Else

-
Allowed_Extra_Tokens = 0

-
serve this logical channel for x bytes, where x is between 0 and MIN(UL_Grant, PBR_Token_Bucket + Allowed_Extra_Tokens, amount of data buffered for transmission) bytes. The value of x is implementation dependent (e.g., when choosing the value of x, the UE should take into account various factors such as SDU segmentation, serving two logical channels with identical priority fairly, etc.)
-
decrement UL_Grant the served amount of bytes, if any.
-
decrement PBR_Token_Bucket by the served amount of bytes, if any.
-
If UL_Grant is greater than zero, for each logical channel ordered in a decreasing priority order, perform the following:

-
if a MBR token bucket has been configured for this logical channel

-
If ((MBR_Token_Bucket >= UL_Grant) and (UL_Grant >= amount of data buffered for transmission))
-
serve this logical channel up to MIN(amount of data buffered for transmission) bytes;
-
Else
-
If (MBR_Token_Bucket >= 0)

-
Allowed_Extra_Tokens = MIN(MAX(0, UL_Grant – MBR_Token_Bucket) , 0.5 * MBR_BUCKET_SIZE)
-
Else

-
Allowed_Extra_Tokens = 0

-
serve this logical channel for x bytes, where x is between 0 and MIN(UL_Grant, MBR_Token_Bucket + Allowed_Extra_Tokens, amount of data buffered for transmission) bytes. The value of x is implementation dependent (e.g., when choosing the value of x, the UE should take into account various factors such as SDU segmentation, serving two logical channels with identical priority fairly, etc.)
-
else

-
serve the logical channel up to MIN(UL_Grant, amount of data buffered for transmission) bytes;

-
decrement UL_Grant by the served amount of bytes, if any.
-
decrement MBR_Token_Bucket by the served amount of bytes, if any.
Once the amount of data served from each logical channel is determined according to the above rules, the corresponding MAC PDU shall be generated.
Logical channels configured with the same priority shall be served equally the by UE.

Editor’s note: Whether the PDCP/RLC/MAC header is included in the definition of the bit rate is FFS.

Editor’s note: What is meant exactly by “served equally” is FFS.

7
Variables and constants

7.1
Variables

PBR_Token_Bucket: This state variable represents the amount of bytes contained in a PBR Token Bucket for a particular logical channel. This state variable is initilized to PBR_TOKEN_BUCKET/2.
MBR_Token_Bucket: This state variable represents the amount of bytes contained in a MBR Token Bucket for a particular logical channel. This state variable is initilized to MBR_TOKEN_BUCKET/2.
UL_Grant: This state variable represents the amount of bytes that can be transmitted in a MAC PDU.
Allowed_Extra_Tokens: This state variable represents the amount of future tokens the UE could borrow for a logical channel in a TTI. This variable allows the UE to borrow future tokens for a logical channel in order to serve a complete SDU to avoid segmentation due to insufficient tokens in the bucket. A UE can only borrow future tokens if the size of the bucket is greater than or equal to 0.
5. References

[1] D. Bertsekas, and R. G. Gallagher, Data Networks, 2nd edition, Prentice-Hall, 1995.
[2] R2-081063 “Text Proposal for UL Logical Channel Prioritisation without Segmentation Optimization”, RAN2#61, Sorrento, Italy.
