3GPP TSG-RAN WG2 Meeting #61
R2-080681
Sorrento, Italy

11 - 15 February 2008
Agenda item:

5.1.3.3
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Sequence Number Handling at PDCP
Document for:

Discussion and Decision

1
Introduction
This contribution discusses a few issues related to sequence number handling (SN, HFN and COUNT) in the latest version of the PDCP specification.

2
Sequence Number Handling
Sequence number handling is defined in PDCP as follows [2]:
At reception of a PDCP DATA PDU from lower layers containing a PDCP SN field, the UE shall:

-
if the PDCP Sequence Number contained in the PDCP SN field is less than the variable Next_PDCP_RX_SN:

-
increment the variable RX_HFN by one;

-
deciper the PDCP PDU using COUNT based on the value of the variable RX_HFN and the value of the PDCP Sequence Number contained in the PDCP SN field of the PDCP PDU header;

-
set the variable Next_PDCP_RX_SN to the received PDCP Sequence Number + 1;

-
if the variable Next_PDCP_RX_SN is larger than Maximum_PDCP_SN:

-
set the variable Next_PDCP_RX_SN to 0;

-
increment the variable RX_HFN by one.

2.1
In-sequence Delivery

The green part of the pseudo-code takes care of the PDCP SN wrap around and obviously works only if the packets reach the PDCP layer in increasing order of SN. Even though RLC provides in-sequence delivery in both AM and UM mode, it is not listed as a function expected from lower layers. Since the pseudo-code does not work without it, it is proposed to add in-sequence delivery in the “Services expected from lower layers” section (4.3.2).
Proposal 1: in-sequence delivery is added to “Services expected from lower layers”

2.2
SDU Losses

The blue part of the pseudo-code tackles possible SDU losses around the wrap around point. Let us consider for instance a 3 bits PDCP SN. A typical sequence would be:

PDCP SN - 0 1 2 3 4 5 6 7 0 1
COUNT - 0 1 2 3 4 5 6 7 8 9
RX_HFN 0 0 0 0 0 0 0 0 0 1 1
Next_PDCP_RX_SN 0 1 2 3 4 5 6 7 0 1 2
Even though e.g. PDCP SN = 7 is lost, one can see that the sequence remains correct:

PDCP SN - 0 1 2 3 5 6 0 1
COUNT - 0 1 2 3 5 6 8 9
RX_HFN 0 0 0 0 0 0 0 1 1
Next_PDCP_RX_SN 0 1 2 3 4 6 7 1 2
2.3
Duplicates

Although it efficiently tackles packet losses, the blue part of the pseudo-code makes it very sensitive to duplicates. Let us consider a scenario where PDCP SN=4 is duplicated:
PDCP SN - 0 1 2 3 4 4 5 6 7 0 1
COUNT - 0 1 2 3 4 12 13 14 15 16 17
RX_HFN 0 0 0 0 0 0 1 1 1 2 2 2
Next_PDCP_RX_SN 0 1 2 3 4 5 5 6 7 0 1 2
As we can see through the example, one duplicate always lead to HFN desynchronisation. Once again, even though RLC provides duplicate detection, this is not listed as a function expected from lower layers. Since the pseudo-code does not work without it, it is proposed to add duplicate detection in the “Services expected from lower layers” section (4.3.2).
Proposal 2: duplicate detection is added to “Services expected from lower layers”

For the HO case (where RLC is reset), it has already been agreed that PDCP has to take care of duplicate detection [1]. Based on what has been explained above, duplicate detection must be performed before updating the HFN.
Proposal 3: duplicate detection at HO by PDCP must be done before HFN update.

2.4
An Alternative Algorithm for PDCP SN Maintenance
We believe that the requirements that PDCP sets on lower layers (in-sequence delivery and duplicate detection) artificially orginate from the pseudo-code used for PDCP SN maintenance, and that those requirements can be relaxed or avoided by using an alternative algorithm for both U-plane and C-plane.
For instance, if we assume that we will never loose more consecutive PDCP SDUs than half of the SN space (a rather safe assumption), the HFN of the received packet is then always the one that generates the closest COUNT from the last received packet. One benefit there is in using the distance property (instead of having a threshold to increment the HFN irreparably) is that the correct HFN will always be selected regardless of duplicates or in-sequence delivery.

Let LastCOUNT denote the COUNT of the last accepted PDCP SDU and LastHFN its HFN. Let COUNT = HFN || SN denote the composition of COUNT. The PDCP SN Maintenance algorithm then becomes:
At reception of a PDCP PDU containing a PDCP SN field from lower layers the UE shall:

-
determine HFN by finding the HFN
[image: image1.wmf]Î

{LastHFN, LastHFN+1, LastHFN-1} that minmises the following delta:

ABS((HFN || SN) – LastCOUNT)
-
use COUNT = HFN || SN for deciphering and integrity check, if applicable;

-
if integrity protection is applicable and the test is passed successfully; or

-
if integrity protection is not applicable:

-
set LastCOUNT = COUNT and set LastHFN = HFN.
NOTE:
LastCOUNT and LastHFN shall be set to zero at PDCP entity establishment.
NOTE:
Above calculation of the three candidates may be optimized: There can only be one for which delta < maximum PDCP SN / 2.
Proposal 4: rewrite the Algorithm for PDCP SN Maintenance.
4
Conclusion
Several issues regarding the PDCP SN Maintenance have been highlighted. It is proposed to either:
1)
Keep the algorithm as it is now written and explicitely list duplicate detection and in-sequence delivery to “Services expected from lower layers” with a note that duplicate detection at HO by PDCP must be done before HFN update.
2)
Rewrite the pseudo-code as suggested in section 2.5

References

[1] 3GPP TS 36.300, E-UTRAN Stage 2
[2] 3GPP TS 36.323, E-UTRA Packet Data Convergence Protocol (PDCP) specification
[3] 3GPP TS 36.423, E-UTRA X2 Application Protocol (X2AP)
_1263121606.unknown

