1

TSG-RAN WG2 Meeting #60bis
 Tdoc R2-080236
Sevilla, Spain, 14th-18th January 2008

Agenda Item:
5.1.2.5
Source:
Ericsson
Title:
RLC Polling for continuous transmission
Document for:
Discussion, Decision
1.
Introduction
The currently agreed polling triggers in LTE RLC are transmission of last PDU in buffer and expiry of poll retransmission timer. It has further been agreed to support either a counter based or window based polling mechanism which would mainly be useful for continuous transmission. In this paper we discuss these options and propose a way forward.
2.
Discussion
It has been agreed to define either a counter or a window based polling mechanism for LTE, one reason for such a mechanism is to reduce the amount of outstanding PDUs and avoid stalling for continuous error free transmission. The discussion is mainly valid for the uplink since in downlink the eNB can poll according to any desired mechanism. It should be noted that the network can send status reports at will to avoid stalling which means that the defined polling mechanism should be kept simple.
Reasons for stalling

The polling mechanism can be used to limit the number of outstanding PDUs/bytes and avoid stalling situations. Protocol stalling can occur either when the RLC window can not be advanced due to the limited sequence number space or due to limited memory, especially in the UE. With a window size of 512 the RLC protocol can potentially stall due to sequence number limitation after 512 TTIs (if no ACK is received for the first PDU). During these 512 TTIs a UE transmitting at 0.5 Mbps would transmit 32 Kbyte and a UE transmitting at 50 Mbps would transmit 3.2 Mbyte. Thus it could happen that a UE transmitting at low data rate potentially experiences stalling due to limited sequence number and a UE transmitting at high data rate potentially experiences stalling due to limited memory (depending on the UE capability).
Window based or counter based mechanism

A counter based mechanism, that sets a poll bit every N transmitted PDUs or N transmitted bytes is simple to implement and test. A window based mechanism would set the poll bit when the transmitter window exceeds a certain value expressed in PDUs or bytes. To avoid stalling with a window based solution, polls should probably be sent regularly (e.g. every TTI or every N transmitted PDUs or bytes) as long as the transmitter window exceeds the configured value (to only rely on the poll retransmission timer may not be sufficient since the transmitter window may still exceed the threshold when the poll retransmission timer is stopped). The complexity with a window based mechanism is higher than the counter based mechanism due to the more advanced triggering criteria.

Especially a window based mechanism that operates on bytes is complex since the transmitter needs to keep track of both transmitted and acknowledged amount of data. A window based solution that operates on bytes should thus be avoided.
It seems that the main functional difference in the behaviour between a counter and window based mechanism is that the window based mechanism does not send polls as long as the transmitter window is below the configured threshold. Since the benefit with that is limited it seems simpler and more straight forward to have a counter based mechanism that sets the poll bit every N transmitted PDUs or every N transmitted bytes.

Proposal1: The poll mechanism should be counter based (i.e. not window based)
PDU based or byte based mechanism
A mechanism that counts the number of transmitted PDUs is simple and straightforward. Stalling due to limitations in the sequence number can easily be mitigated. Stalling due to UE memory limitation can be mitigated to some extent but an exact tuning of the polling mechanism to the UE memory size is not possible since the PDU size is varying (e.g. it is not known beforehand how much data a given number of PDUs will correspond to).
For a byte based mechanism the situation is the opposite. I.e. it is easier to tune the mechanism to the UE memory size but its more difficult to configure the mechanism to efficiently avoid stalling due to sequence number limitation.
Combining two criteria into one mechanism

Since stalling may sometimes occur due to sequence number limitation and sometimes due to memory limitation it may be natural to consider both criteria in the polling. One alternative is to specify two separate mechanisms, one byte based and one PDU based. However, we instead propose to specify one single mechanism that works as follows

Initialise PDU_Counter and ByteCounter to zero
[transmit data]
IF PDU_Counter ≥ PDU_Threshold OR ByteCounter ≥ ByteThreshold THEN

- Trigger a poll

- Reset PDU_Counter AND ByteCounter

END IF

By having the two criteria in one mechanism instead of two mechanisms, the polling by the two criteria is coordinated and polls are only transmitted when needed to avoid stalling. Two separate mechanisms lead to that polls are sent in an uncoordinated fashion by both mechanisms, i.e. a poll can be triggered by one of the mechanisms directly after a poll was triggered by the other mechanism. A pure byte based or counter based solution is achieved by configuring respective threshold to a special value representing infinity (or criteria disabled).
Proposal 2: The mechanism should be counter based
Proposal 3: The mechanism should consider both transmitted PDUs and transmitted bytes, which could be handled in the same mechanism
3.
Conclusions
Based on the above discussion we propose:
Proposal1: Proposal1: The poll mechanism should be counter based (i.e. not window based)
Proposal 2: The mechanism should be counter based

Proposal 3: The mechanism should consider both transmitted PDUs and transmitted bytes, which could be handled in the same mechanism

3GPP

