Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #56-bis
Tdoc R2-070052
Sorrento, Italy, 15-19 January, 2007

Agenda Item:
05.7.2
Source:
Ericsson

Title:
L2 MBMS content synchronization
Document for:
Discussion and Decision
1 Introduction

At the last RAN3 and RAN2 meetings a number of proposals were discussed for content synchronization of MBMS data within an SFN. In this contribution we elaborate on the byte level sequence number based proposal introduced in [1] in order to demonstrate the feasibility of the concept.
2 Byte Level Sequence Number Based Synchronization
The byte level sequence number based content synchronization method belongs to the category of “SAE Bearer Level L2 Content Synchronization” schemes according to the categories defined in R3.018. The corresponding protocol stack is shown in Figure 1. In this solution the SYNC layer in the mUPE adds byte level sequence numbers to the MBMS PDUs.

[image: image1.emf]

RLC

MAC

PHY

UE

mUPE

eNB

PDCP

PDCP

RLC

MAC

PHY

eBM-SC

MBMS

packet

MBMS

packet

TNL

TNL

TNL

SYNC SYNC

SYNC: Protocol to synchronise

data used to generate a certain

radio frame

Figure 1: SAE Bearer Level L2 Content Synchronization
The assignment of sequence numbers to MBMS PDUs is illustrated by an example in Figure 2. The SN of the next packet is obtained by the SN of the previous packet incremented by the length of the previous packet (expressed in number of bytes). That is, the first PDU (PDU#1) gets SN=0 (or any initial SN value as specified by the control plane at the start of the MBMS service), then the next PDU (PDU#2) gets SN=256, assuming that the length of the first PDU was 256 byte and so on.

[image: image2.emf]

PDU#1 PDU#2 PDU#3 PDU#4

size: 256 byte size: 512 byte

size: 128 byte

PDU#1

SN:

0

PDU#2

SN:

256

PDU#3 PDU#4

SN:

768

SN:

896

size: 256 byte

Figure 2: Adding byte level sequence numbers to MBMS PDUs at the mUPE
Prior to the start of the MBMS service a set of Physical Resource Blocks (PRB) and a corresponding Modulation and Coding Scheme (Transport Format) to be used for the given MBMS service are selected and signalled to all eNodeBs. The start time of the MBMS service in terms of an absolute time is also configured at each eNodeB so that each eNodeB knows when to send the first PDU with the initial sequence number (SN=0 in this example). Finally, the eNodeB needs to know in which consecutive TTIs it is supposed to transmit with the given Transport Format, i.e., the recurrence pattern. The block of data transmitted in one TTI, using the pre-allocated PRBs and TFs, is called a Transport Block (TB).
Based on the above information all eNodeBs can unambiguously map the received PDCP PDUs into the corresponding transport blocks, which is necessary to maintain the SFN properties. The example in Figure 3 shows how an eNodeB maintains its transmission window and thereby detects losses and idle periods. We have assumed a Transport Format size of 4096 bit which is scheduled for every 5th TTI and sums up to 819.2 kbps. Based on this information an eNodeB can advance its lower window edge (next expected sequence number) upon each occurrence of the MBMS TTI. If the corresponding PDCP PDUs have been received in time (inside the light-blue boxes) without any gaps, the eNodeB performs concatenation to generate the RLC/MAC PDU.

It is assumed that the number of user bits that can be carried in a given TB is fixed, i.e., it does not depend on how many PDUs are multiplexed into the given TB. That is, we assume a fixed size MAC header, which needs to support a sufficient amount of multiplexed/concatenated PDUs per TB. (It might be possible to configure the MAC header according to the level of multiplexing that needs to be supported at the start of the MBMS service.) (We also note that the solution could be extended to work with variable size MAC headers as well, if this is deemed to be necessary.)

[image: image3.emf]

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps 4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps 4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

Figure 3: Mapping the byte numbered PDUs into the appropriate radio resource blocks at the eNodeB
Since the Physical Resource Blocks and Transport Formats configured for the use of the given MBMS service on the radio interface are known by each eNodeB within the same SFN area, upon reception of the byte sequence numbered PDUs each eNodeB will know unambiguously how to segment and concatenate the PDUs and in which Transport Blocks to send them out on the radio interface. This works also in case of packet loss on the Transport Network (see middle part of Figure 3) and even if the mUPE does not send any data for a particular TTI (right part of Figure 3). More details on these two cases are explained below.
Operation in case of packet losses on the transport
In Figure 4 it is shown how the eNodeB should map the PDCP PDUs into the appropriate Transport Blocks in case some of the PDUs get lost on the transport network.

[image: image4.emf]

128 byte

 256 byte

PDU#1 PDU#2 PDU#3 PDU#4

TB size: 512 byte TB size: 512 byte

TB#1

SN:

0

SN:

256

SN:

768

SN:

896

TB#2 TB#3

512 byte

256 byte

padding or

no transm. of TB#2

TB size: 512 byte

Figure 4: Mapping the PDUs into the appropriate transport blocks at the eNodeB
- some packets are lost on the transport –

Let us assume that PDU#3 is lost on the transport network, which of course means that the sequence number of the lost PDU is unknown as well. In this case the eNodeB should determine which PDU or which part of a PDU it should resume transmission in TB#3. Whether TB#2 can be sent out by the eNodeB with partial content only, i.e., with parts of the TB filled up with padding depends on the L1 details. Sending out the TB with padding may destroy the SFN property and result in interference. (Note that the TB sent out by the other eNodeBs that have received all the PDUs will differ from the TB sent by the eNodeB with the lost PDU.)
The eNodeB can use the sequence number of the next received PDU (i.e., PDU#4) and the sequence number of the last received PDU (i.e., PDU#2) to determine how many bytes of data is missing and determine where it should continue with PDU#4 in TB#3.

Operation in case of idle gaps in the stream
Once the MBMS service has been started the synchronization is self-sustained according to the above method as long as the buffer in the eNodeB for the particular MBMS service does not run out of data. However, this may not be possible to guarantee in all cases as the MBMS data may be bursty, meaning that there might be idle gaps between bursts of packets.
In order to maintain the synchronization also in cases of idle gaps in the MBMS data stream the mUPE needs to advance the byte sequence number of the first packet sent after the gap such that the increment in the sequence number accounts for the amount of data that could have been sent during the idle gap. The procedure is illustrated by an example in Figure 5.

[image: image5.emf]

padding

TB#2

Idle gap

no transm. padding

 256 byte

PDU#1 PDU#2

TB size: 512 Kbyte TB size: 512 byte

TB size: 512 byte

TB#1

SN:

0

SN:

1152

TB#3

256 byte

Figure 5: Maintaining the synchronization in case of idle gaps in the MBMS stream
- by advancing the SN -
As shown in the example, there is temporarily no data to send after PDU#1. The mUPE continuously measures the data rate of the MBMS stream and it detects when the rate falls below the target rate, i.e., below the rate that has been allocated for the MBMS service on the radio interface. In such cases it advances the byte sequence number of the next PDU such that it catches up with the data rate on the radio interface. That is, the mUPE ensures that the PDUs following an idle gap have sequence numbers that are ahead of the next expected sequence number to be transmitted by the attached eNodeBs.
We note that the mUPE is not required to maintain precise knowledge about the timing of the MBMS transport blocks on the radio interface (i.e. on the TTI level) in order to determine how much it needs to advance the byte sequence number after an idle gap. It would be sufficient to measure the raw data rate at the mUPE on a longer time scale (e.g., on ~x100 ms) than the periodicity of the MBMS transport block (e.g., 5 TTI in the example of Figure 3) and detect the rate decrease on that time scale.
We also note that the first packet with the advanced SN after the gap does not necessarily fall on a TB border (i.e., PDU#2 may not necessarily start at the beginning of TB#3 in the example). In such a case the eNodeB must add padding to the beginning of the TB.
One possible enhancement of the above scheme is to let the mUPE send dummy PDUs during the idle gap in order to keep the MBMS stream utilized with virtual data and to keep the byte counter rolling on continuously in the eNodeB, as shown in Figure 6. Sending dummy PDUs enables for the eNodeB to distinguish the idle gap from packet losses. This could be important in deciding whether a partially filled TB can be sent out with padding or the eNodeB should refrain from sending completely. Note that if the lack of data is due to an idle gap then the eNodeB can safely send partially filled TBs with padding, while in case of loss of data on the transport network the eNodeB may be better refrain from sending at all in order not to destroy the SFN property.

[image: image6.emf]

padding

TB#2

dummy dummy dummy

Idle gap

no transm. padding

 256 byte

PDU#1 PDU#2

TB size: 512 byte TB size: 512 byte

TB size: 512 byte

TB#1

SN:

0

SN:

1024

TB#3

256 byte

SN:

256

SN:

512

SN:

768

Figure 6: Maintaining the synchronization in case of idle gaps in the MBMS stream
- by sending dummy PDUs –
As shown in the example, the mUPE inserts dummy PDUs, each with a virtual size of 256 Kbyte as indicated in the SN field of the packet header (it is just an example, it could be any size of virtual data). These PDUs do not contain a data part, only the header. When the dummy PDUs arrive to the eNodeB, the eNodeB increases the next expected SN and maintains in which TB the next expected PDU should be transmitted, just the same way as it would do for normal data PDUs. The only difference is that no transmission is performed on the radio interface for empty TBs corresponding to the dummy PDUs.
Protocol realization

From a protocol realization point of view the required byte level sequence numbers can be carried either in the transport network tunnelling header or as part of the PDCP layer. Alternatively, it is possible to define a separate protocol layer for that purpose, similar to the SYNC layer shown in Figure 1. From these options the use of the GTP-U header seems to be the most favourable, since it does not require a new protocol layer and it does not need the processing of the PDCP layer in the eNodeB. A 3 byte sequence number space should be sufficient for the byte level sequence numbering of PDCP PDUs, which enables the continuous sequence numbering of approximately 16 Mbyte of data.
3 Properties of this solution
· The UP protocol architecture for MBMS services can be the same as for point-to-point services. The mUPE functionality can be very similar to the UPE functions.

· No knowledge about the timing and the size of the transport blocks allocated for the MBMS service on the radio interface is needed in the mUPE. The mUPE only needs to know the transmission rate of the particular MBMS service.
· There is no need for an absolute clock in the mUPE that runs in synch with the eNodeB clocks. (No absolute time stamps need to be handled in the mUPE.)
· No new protocol layer needs to be introduced. The available RLC/MAC protocols in the eNodeB are reused (e.g., to perform segmentation/concatenation). The required sequence numbering can be added to GTP-U with minimal modification.

· The extra protocol overhead over the transport network (due to the sequence numbers) is minimal. The GTP-U sequence numbering is already supported.

4 Conclusion
In this contribution we have demonstrated the feasibility of the byte sequence numbering concept for MBMS L2 content synchronization. We propose for RAN2 to agree on the proposed scheme for MBMS L2 content synchronization in LTE.
5 References

[1] R2-063222
L2 MBMS content synchronization, Ericsson, RAN2#56, November, 2006, Riga

1/5
2007-01-08

_1228804944.doc

SN: 896

SN: 768

PDU#4

PDU#3

SN: 256

PDU#2

SN: �0

PDU#1

size: 256 byte

size: 128 byte

size: 512 byte

size: 256 byte

PDU#4

PDU#3

PDU#2

PDU#1

_1228919555.doc
[image: image1.bmp]

no transm.

padding

256 byte

TB#3

SN: 1152

padding

Idle gap

 256 byte

SN: �0

TB#1

TB#2

TB size: 512 byte

TB size: 512 byte

TB size: 512 Kbyte

PDU#2

PDU#1

_1229690288.doc
[image: image1.emf]MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps 4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps 4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

_1228919799.doc
[image: image1.bmp]

no transm.

padding

dummy

dummy

SN: �768

256 byte

TB#3

SN: 1024

SN: �512

SN: �256

Idle gap

 256 byte

SN: �0

TB#1

TB#2

TB size: 512 byte

TB size: 512 byte

TB size: 512 byte

PDU#2

padding

dummy

PDU#1

_1228915025.doc
[image: image1.bmp]

padding or

no transm. of TB#2

256 byte

TB#3

SN: 896

SN: 768

128 byte

512 byte

SN: 256

 256 byte

SN: �0

TB#1

TB#2

TB size: 512 byte

TB size: 512 byte

TB size: 512 byte

PDU#4

PDU#3

PDU#2

PDU#1

_1225884732.doc

SYNC: Protocol to synchronise data used to generate a certain radio frame

SYNC

SYNC

TNL

TNL

TNL

MBMS packet

MBMS packet

eBM-SC

PHY

MAC

RLC

PDCP

PDCP

eNB

mUPE

UE

PHY

MAC

RLC

