3GPP TSG RAN WG2 Meeting #54
R2-062139
Tallin, Estonia, Aug. 27 – sep. 1, 2006
Source: Alcatel
Title:
Header structure for concatenation in LTE
Agenda Item:
11.13

Document for:
Discussion
1. Introduction

One work assumption in LTE is that concatenation of the data from the same logical channel may happen. But it is still open whether the concatenation should be done in RLC or MAC. In this contribution, we propose header structure for concatenation with assumption that the concatenation is done in the RLC sub-layer. However, this header structure can also be applied if the concatenation is done in MAC sub-layer.

Header structure should be defined to fulfill the above-mentioned work assumption with the following concerns:
· Header consumption should be low

· Can support flexible concatenation and the receiver can easily reassemble the data payloads without any ambiguity.
For description simplicity, we call the SDU received at RLC from high layer is ARQ SDU, the segmentation output is ARQ PDU and the concatenation output is RLC PDU.
2. Header structure definition for Concatenation
In LTE, the segmentation can be done dynamically and adaptively according to the TB size. Reference [1] discussed the segmentation and header structure. One field such as ST in [1] is required to differentiate the segmentation or not.

Proposal 1: In LTE, each data payload header should carry at least one Field to indicate segmentation or not.

2.1. General structure definition

The concatenation of the ARQ SDU or ARQ PDU (retransmission) happens if resource is enough. With concatenation, one RLC PDU contains data payloads from more than one ARQ SDUs (ARQ PDUs). The general structure is shown in fig. 1

[image: image1.wmf]Sub

-

header for

payload

1

Sub

-

header for

payload

2

...

payload

1

payload

2

...

Header part

Data part

N

Number of

data payload

Fig1. General concatenation PDU structure

As fig. 1, concatenating a data payload means to add the related sub-header (SN, ST, SI) pair in the RLC PDU’s header part and the data payload in the RLC PDU’s data part.
In fig. 1, the sub-header for each data payload can be determined according to reference [1]. As the proposal 1, the sub-header must contain at least one field such as ST=000.

In general situation, it is sure that only the first and the last part of a RLC PDU could be the segments of ARQ SDU or ARQ PDU (retransmission), and in between the data payloads should be the complete ARQ SDU or ARQ PDU (retransmission). In fig. 2, only considers the first transmission scenario.
· According to the fig.2, the first part of the RLC PDU must be one of the following cases:

· A whole ARQ SDU, then set ST=000 and no SI field.

· A whole ARQ PDU (for retransmission). ST and SI pair keeps unchanged.

· A remaining segment of the previous unsent ARQ SDU or ARQ PDU (retransmission). ST and SI pair keeps unchanged.

· The last part of the RLC PDU must be one of the following cases:

· A whole ARQ SDU, set ST=000 and no SI field.

· A whole ARQ PDU (for retransmission), ST and SI keeps unchanged

· The first segment of an ARQ SDU or ARQ PDU (retransmission). Then the ST=ST+1. The newly added SI =0

· For the middle part:

· Whole ARQ SDU, ST=000 and no SI
· Whole ARQ PDU (retransmission), the ST and SI pair keeps unchanged

To guarantee the receiver to extract the concatenated header and data payload clearly, we propose to use field ”N” to indicate the number of data payload concatenated together.
Proposal 2: One field in the RLC PDU header should be used to indicate the number of data payload concatenated together for one TTI transmission.
· Field N: it is used to indicate how many number of ARQ SDU/PDU are concatenated together.
So after extracting N pairs of SN, ST and/or SI field, the receiver knows where is the end of the header and the start of the data payload.
Then the header structure for concatenation is shown in fig.2:
From fig. 2, we see a lot of ST with 000. If these number of ST=000 in the middle part can be ignored, the header consumption can be optimized. This is discussed in section 2.2.

Fig2. Header structure for concatenation: general description without considering retransmission
2.2. Optimized header structure

Fig. 2 describes a general scenario. We also have other choices to optimize the header consumption. Which data payload can be sent in this TTI is the task of the local scheduling procedure. But the sequence of inserting these data payloads into one RLC PDU is not important for the receiver. Then a special concatenation procedure at the transmitter can be used to ignore the ST=000 field in order to reduce the header consumption.
2.2.1 Transmitter procedure
· (A). First, inserts the fist data payload into the RLC PDU with ST and SI field unchanged and turn to process the next data payload and go to (B).
· (B). For the current data payload:
· If the current data payload’s ST=000
· If a data payload with ST=000 has been concatenated ahead
· The ST field is ignored and only (SN, LEN) pair is used as this data payload’s sub-header
· Insert the (SN, LEN) pair at the end of the RLC PDU header part and the related data payload at the end of the RLC PDU data part.
· Turn to process next data payload and go to (B)

· Otherwise, if no data payload with ST=000 exists,

· This means that the current data payload is the first one with ST=000

· Keeps the ST unchanged and (SN, ST=000,LEN) pairs is the header for this current data payload.

· Insert the (SN, ST=000,LEN) pair at the end of the RLC PDU header part and the related data payload at the end of the data part.
· Turn to process next data payload and go to (B)

· Otherwise, if ST !=0 for the current data payload

· Exchange sequence of this current data payload with its previous one until finding its previous data payload with ST!=0, or it becomes the first data payload of the concatenation PDU. Then turn to process the next data payload and go to (B).

· (C) End the concatenation procedure until all scheduled data payloads are inserted into the RLC PDU.

We can see that a RLC PDU only contains one ST=000 field while the other ST=000 fields are saved.
2.2.2 Receiver procedure

The corresponding receiver procedures are summarized as follows:

· Firstly, The receiver extracts the “N” field information from header part
· Then the receiver extracts each header information field with (SN, ST, SI, LEN) pairs if ST! =0.

· The receiver detects the first (SN, ST, LEN) pair with ST=000 (assume this happens at the ith data payload), then for the receiver, it knows that the following N-i pairs are (SN, LEN).

We see that the concatenation header overhead decreases significantly as shown in fig. 3. For example, if the ST=000 happens after the ith SN, then the following (N-I)*3 bits are saved.

[image: image3.wmf]RLC PDU

ARQ SDU from the

same logcial channel

ARQ SDU

1

LCID

#

1

ARQ SDU

2

...

ARQ SDU N

N

SN

1

ST

SI

1

...

LEN

1

...

Header for the first part

ARQ SDU

1

ARQ SDU

2

...

ARQ SDU N

PDU Header

N part of data

payload

SNi

LENi

000

SN

(

i

+

1

)

Number of concatenated

data payload

...

NO ST field

The first ST

=

0

happens for the ith SN

Header for the following part

:

N

-

i

pair of SN

,

and LEN

LEN

(

i

+

1

)

Header for data payloads

with ST

!=

0

This data payload is swithced

to the position where its

previosu data payload with

ST

!=

0

or at the front of the

concatenation PDU

switch

Fig. 3 optimized header for concatenation PDU

According to the above discussion, the receiver could extract each data payload without any ambiguity. Furthermore, the header consumption is significantly decreased.
3. Conclusion
In this document, an adaptive and simple structure is provided according to the LTE requirements. We hope this content can be discussed and agreed.
Reference

1. R2-062138 header structure for segmentation in LTE Alcatel
2. R2-060827 segmentation in E-UTRAN Nokia

3. R2-060858 Segmentation/concatenation scheme in E-UTRAN HUAWEI
_1211699623.vsd
�

文本�

_1217693057.vsd

_1217693409.vsd
�

_1206251262.vsd
文本�

