3GPP TSG-RAN WG2 meeting #44




R2-042028
October 4th – 8th, 2004





Sophia Antipolis, France
Agenda item:
7
Source: 
Qualcomm

Title: 
RLC Status Reporting Enhancement
Document for:

Discussion, Decision

1.
Introduction
In W-CDMA a single protocol was created to handle all the framing and re-transmission functionality. This protocol is called RLC (see [1]), and it supports three separate transmission modes: transparent (RLC-TM), un-acknowledged (RLC-UM) and acknowledged (RLC-AM). In addition to this, it was made flexible enough to allow, in combination with the physical layer, the support of different types of QoS (e.g. different maximum delay and residual error rates).

Except for minor enhancements, RLC has not been modified since its inception as part of R’99. Most of its components were actually devised in the early stages of UMTS development and have been frozen since then. As new physical layer features were introduced, a conscious decision was made to not modify RLC and to instead try to address some of its limitations in other layers. 

In this document we focus on the basic mechanism of status reporting of the RLC-AM mode and try to identify some its limitations. Then, we propose a solution that would provide better configuration flexibility across a wider range of service scenarios.

2.
Background
2.1
Overview of RLC-AM

Here, we will focus on the mechanisms by which status reports are generated in RLC-AM.
There are multiple mechanisms available for triggering status reports: 

· Periodic: a report is triggered at fixed time intervals.

· Missing PDU: a report is triggered if a break in the sequence number sequence is detected.

· Reception of a poll: a report is triggered if a poll is received from the transmitter.

A poll is indicated by the transmitter by setting a bit on the RLC-AM header. There are multiple mechanisms available for triggering the transmission of polls by the transmitter:
· Periodic: a poll is triggered at periodic time intervals.

· Last PDU in (re)transmission buffer: the poll is set on the header of the last PDU in the transmission or re-transmission buffer (each can be configured independently).

· Poll timer: a poll is triggered a fixed amount of time after the previous one, if transmitted data had not yet been positively acknowledged after the timer expires. This scheme ensures redundancy in case a poll is lost.

· Every Poll_PDU PDUs: a poll is triggered after the transmission of Poll_PDU PDUs.
· Every Poll_SDU SDUs: a poll is triggered after the transmission of Poll_SDU SDUs.
· Window based: a poll is triggered after the transmission window has advanced more than a certain fraction of the transmission window.

The RLC-AM receiver maintains a number of state variables:

· VR(R): latest in-sequence received sequence number (marks the beginning of the receiver window)

· VR(H): highest sequence number for any PDU received

· VR(MR): highest sequence number that will be accepted as valid (marks the end of the receiver window and is set exactly to VR(R)+RxWindowSize).

Probably the most important aspect of status reports is that every single report needs to include all the sequence number gaps that exist between VR(R) and VR(H). In order to avoid the triggering of spurious, i.e. un-necessary, re-transmissions, we also introduced the poll and status-prohibit mechanisms. In essence, the corresponding timer is started when a poll or a status is sent out. If a poll or a status report is triggered while the corresponding timer is running, its transmission will be delayed until the said timer expires. To ensure that spurious re-transmissions are not triggered, either the poll prohibit or the status prohibit timers should be set to a value slightly longer than the expected round-trip-time. This will give enough time for the NACKs to be received on the other side and the re-transmissions to make their way to the receiver before the next status report is sent out.
2.2
Current Configurations

When relying on the poll-prohibit mechanism to prevent spurious re-transmissions, the ARQ loop required to fill a hole consists of three steps: transmitting a poll, transmitting a status report and transmitting the missing PDU. Each of these steps essentially constitutes a potential failure point. Compared to this, relying on status-prohibit is more robust because the loop needed to fill a hole includes one fewer steps, i.e. the transmission of the poll.

Therefore, most R’99 network configurations use the status-prohibit mechanism to ensure that there are no spurious re-transmissions and use a number of polling schemes to ensure that at least one poll is received while the status prohibit mechanism is running. The status prohibit value is typically set to 40 ms longer than the actual round-trip time to account for the finite bandwidth available in performing the re-transmissions.
2.3
Scenario Description
As was explained above, because each RLC status report needs to include NACKs for all the holes detected in the receive window, pretty much all networks out there use a status prohibit that is slightly longer than the RLC round-trip time. This means that with typical configurations, during sustained data transmissions, status reports are transmitted once per RLC round-trip time.
NACK transmission
In this section we are examining the delay affecting the re-transmission of missing PDUs when only one status report is transmitted per RTT. Below we provide an illustration of what occurs. The red boxes indicate the detection of a new hole in the RLC sequence numbers. 

[image: image19.bmp]
Figure 1: Delay in NACK transmission

As can be seen, it takes a certain amount of time between the detection of a hole and the transmission of the corresponding NACK. Assuming that the transmission errors are not correlated with the status report timing, the additional delay will be uniformly distributed between 0 and the value of the status prohibit timer, i.e. close to RTT. This means that the total delay between the time when a hole is detected and the time when the re-transmission is received is equal on the average to 1.5 times the round-trip time.
Note that only the first re-transmission would be affected by this delay. Every transmission after that would only be delayed by the RTT.

ACK transmission

For protocols, such as RLC-AM and TCP, which rely on the transmitter window to perform flow control, acknowledgements are used to nudge the transmission window forward. As long as the window size is very large, the delay in sending acknowledgements will not affect performance. Yet, for RLC-AM, the ACKs are sent with the same frequency independently of whether there are any NACKs to report.

In this section we will attempt to determine, assuming that status reports are only generated once per RTT, how many PDUs the transmitter needs to be able to store in order to ensure that there is no stalling of the window before an ACK is received to advance the window. We are assuming that there are no errors during the transmission.

As can be seen from the figure below (figure 2), the amount of data that needs to be buffered in the transmitter between receptions of two consecutive status reports (which is actually the maximum) corresponds to the amount of data that can be transmitted in two times the round-trip time. 

In R’99 this is probably not particularly important. For HSDPA however, the RLC window size is quite limited. Based on what is described above, if we assume a round-trip-time of 200ms and a PDU size of 320bits, the maximum achievable data-rate would be: 2048*320/(2*0.2)=1.63Mbps. Of course, in the case of HSDPA it would be possible to configure the status-prohibit to a smaller value, as for good channel conditions the residual error rate is extremely low. However, if we use the same configuration across the cell, the users in bad conditions would be affected by the large number of spurious re-transmissions.


[image: image2]
 Figure 2: Transmission window beween NACKs
3.
Proposal
3.1
Objective
Despite all the complexity that has made its way into the specification, RLC does not allow the transmission of status reports more often than once per RTT without running the risk of spurious re-transmissions. This in itself is the cause for longer delays in advancing the RLC window and in NACKing missing PDUs. 
An optimal scheme should offer the following features:

· Possibility to trade-off NACK delay with feedback overhead without triggering spurious re-transmissions.

· Possibility to trade-off ACK delay with feedback overhead. It would make sense to have the possibility to decide this independently of the NACK delay, as it may help to adjust the overhead when the error rate is low, without increasing the re-transmission delay.

On this last point, it would be useful for the protocol design to offer a reasonable trade-off between the RLC header size and the rate at which ACKs need to be fed back in order to achieve reasonable data-rates. Note that it would also be useful for the maximum window size to be large enough to support, depending on the UE capabilities, the expected peak data-rates. These issues however will not be handled in this contribution.
As explained above, RLC includes a number of constraints that make it impossible to make these kinds of trade-offs:

· Each status report includes NACKs for all the holes in the SN

· Status reports are sent at the same rate, independently of whether any NACKs are present, even though ACKs may not need to be sent that often

Below we are providing the summary of a scheme that could be used to address these issues. 

3.2
Independent tracking of SN holes
The main reason for the rigidity of RLC is the need to send NACKs for all the holes in the receiving window every time a status report is triggered. This makes it impossible to ensure there are no spurious re-transmissions unless the status-reporting is done less often than the round-trip time.
The only way to have more flexibility is to track holes in the PDU sequence independently. In addition to the regular status-prohibit timer (which is applicable for all holes), we would suggest having a separate timer per hole. This timer, e.g. called the NACK prohibit timer, would not prevent the transmission of a status PDU. It would just prevent the inclusion of NACKs referring to this hole in the report. The combination of polling and status prohibit would allow to define the rate at which reports are generated, while it will also be possible for example to efficiently use the Missing PDU status report trigger.

In the figures below we are attempting to illustrate this principle. The yellow boxes represent polls and red boxes represent lost PDUs. In this example, the polling scheme is “Poll every 4 PDUs”. The green boxes represent the re-transmissions of lost packets.

[image: image3]
Figure 3: Basic R’99 behavior


[image: image4]
Figure 4: Proposed alternative

As can be seen, the existing scheme requires fewer NACK transmissions, but leaves little room for adapting the delay in sending feedback. With the new scheme, it would be possible to have either the new or old behaviour. Note also that more frequent transmission of status reports gives more even distribution of the re-transmissions and would allow the “NACK prohibit timer” to take lower values than the “Status prohibit timer” at equal probability of spurious re-transmissions. 
ACKs will of course always be included in status reports containing NACKs. When however there are no NACKs available, depending on the supported window size, it does not necessarily make sense to trigger the transmission of an ACK. We therefore feel it would be useful to introduce an “ACK prohibit timer”. This timer would typically be set to a longer value that the NACK prohibit timer. Status reports including NACKs would only be delayed if the Status Prohibit timer is running, whereas reports with ACK only would be delayed if either timer is running. 
4.
Simulation Results

The simulation results were generated using a simplified MAC and physical layer. The data-rate available to RLC is constant and the PDU errors are assumed to be perfectly correlated for any given TTI and perfectly un-correlated from one TTI to the next. Unless otherwise specified, the error rate on the status reports is the same as on the data.
The results themselves were generated with the following assumptions:

· 320bit PDU size

· 64kbps RAB with 20ms TTI (4 PDUs sent per TTI)
· 200ms RTT

However, the results are normalized with respect to data-rate and buffer size so that they can be matched to other scenarios as well. The data-rates are normalized relative to the data-rate that is seen above RLC when there are no errors on the channel (just SN and LI overhead). The buffer size is normalized relative to the amount of data that can be sent in one RTT at the rate provided by the channel, which in these simulations is fixed.
4.1
Throughput results

The simulation results provided in this section rely on a full-buffer traffic model, which never runs out of data. It is assumed that the RLC configuration relies on the Status prohibit timer (SPT) to eliminate spurious re-transmissions.
Current RLC performance

First, we provide some simulation results on the impact of the SPT value on the throughput:
[image: image5.wmf]
Figure 5: Impact of Status Prohibit Timer Value
SPT values lower than the RTT will result in systematic spurious re-transmissions. This gives a shorter turn-around, as it increases the chances that the missing PDU will be received. However, the spurious re-transmissions impact the throughput since they also need to be sent out. As can be seen, from figure 5, for large buffer sizes the turn-around time is not as critical. Therefore, there is a benefit to operating with a SPT larger than the RTT in order to reduce the amount of spurious re-transmissions. As the buffer size is reduced however, the performance is affected by how fast the window is advanced and therefore, it can be beneficial to operate with an SPT lower than 100% of RTT. Note that in practice, all networks operate with an SPT value larger than 100% of RTT.

Based on the R’99 RLC and using an SPT value of 110%, which according to the results provided above gives the best trade-off, the performance that can be achieved is provided below for different physical layer FER values below:

[image: image6.wmf]
Figure 6: Impact of Buffer size on throughput
These curves can help to pick the best trade-off between buffer requirement and throughput performance, depending on the FER that one wants to operate at. As can be seen, the amount of buffer that is required in order to achieve a throughput very close to the peak when operating at 5% FER is about 400% the RTT buffer size.

Comparison with enhanced RLC

The enhancements proposed in this paper allow the faster transmission of NACK information and therefore a reduction of the turn-around time seen by RLC without incurring the effect of spurious re-transmissions. Below, we provide the throughput plots as a function of the buffer size for different FER values. Note that the plots indicating a “NACK Prohibit Timer” value of -1 correspond to the original RLC and those with a value different from 0 correspond to the enhanced RLC.
As can be seen from figures 7, 8 and 9, the same performance can be achieved with the new scheme using a buffer size 50% of an RTT smaller than what would be required with the old scheme. Note that in the case of a 384kbps bearer and a round-trip time of 150ms, the buffer savings at equivalent performance would correspond to: 28.8 kb. Another interesting thing to note is that this benefit even arises for 0% FER case because with the old scheme the ACKs are sent much less frequently, thus delaying the window advancement.

The detailed RLC configuration is provided in Annex A.
[image: image7.wmf]
Figure 7: Performance comparison at 0% TTI Error Rate
[image: image8.wmf]
Figure 8: Performance comparison at 1% TTI Error Rate
[image: image9.wmf]
Figure 9: Performance comparison at 5% TTI Error Rate
4.2
Delay Results
In addition to the benefits in terms of stalling probability, the faster retransmission turn-around time would reduce the delays seen by the higher layers. The results provided here were generated by transmitting pages of a given size through the channel and generating the delay distribution that is seen. The buffer size was assumed to be 600% of the RTT, so as to eliminate any window stalling effects.

Again, in order to keep the results generic, the page sizes were normalized based on the amount of data that can be transmitted on the link within one RTT. The figure below provides the mapping between the actual page size and the normalized page size depending on the data-rate and the RTT.
[image: image10.wmf]
Figure 8: Normalization examples
As can be seen, the higher the data-rate and the RTT, the smaller the number of RTTs that it will take in order to complete the transmission. 

Below, we provide plots of the averaged delay, normalized again relative to the delay corresponding to the 0% FER case. As the size of the pages transmitted increases, the delay tends to converge toward the delay corresponding to the average throughput that can be achieved. In the case of a 5% FER channel, the delay corresponds to about 105% of the nominal, since the useful throughput is reduced by the amount needed for the re-transmissions. The link-layer needs to provide a quick turn-around in order to give low relative delays for small file sizes and small amount of spurious retransmissions so as to not affect the steady-state throughput.
As expected, the configuration using an SPT value lower than 100% shows better delay performance for small file sizes where the re-transmission overhead is important. However, as the file size increases, the effect of the throughput reduction due to spurious re-transmissions dominates and the relative performance of this configuration becomes worse. The enhanced RLC on the other hand gives good performance across the board. This impression is confirmed with the 90 percentile plots. In either case, average delay and 90 percentile, the performance enhancement corresponds to about 10 to 20% for relatively small payload sizes.
In the plots below, the legend uses the following notation:

· SP: Status Prohibit timer

· TP: Timer Poll

· NP: NACK Prohibit Timer (corresponds to enhanced RLC results)

The RL FER is only referring to the status report results.

[image: image11.wmf]
[image: image12.wmf]
[image: image13.wmf]
As a complement to this, we provide in the Annex B the results corresponding to a 1% FER target.
5.
Conclusion

Despite all the complexity that was introduced in RLC, the protocol does not offer the possibility to adjust the trade-off between delay in closing the ARQ loop and feedback overhead without resulting in spurious re-transmissions. In this document we described a mechanism that, we believe, would address this shortcoming.
5.
References

[1] 
3GPP TS 25.321

RLC Protocol Specification
[2]
R2-032476


Differentiation of RLC PDUs at MAC-hs, Qualcomm, WG2#39
Annex

A
RLC Configuration for Throughput tests

· RTT: 200ms
· Data-rate: 64kbps (fixed)

· Poll_PDU: 4 (poll sent every TTI)

· Poll Prohibit Timer: 0ms.

· Poll-timer: 220ms.

· Poll Tx last PDU in buffer: 1

· Poll Tx last PDU in reTx buffer: 1

· Status report on missing PDU: 1

· No discarding.
B
Delay results with 1% FER

[image: image14.wmf]
[image: image15.wmf]
[image: image16.wmf]
ACK 2 Tx





Delay to next report





New hole detected in SN space





Status Prohibit





Status report





Status report





ACK 1 Tx





Status Prohibit





SN





Time





One way delay





RLC Tx





RLC Rx





ACK 1 Rx





ACK 2 Rx





One way delay





Transmission window between two ACKs





Polls





NACK Prohibit Pkt1





Receiver





Sender





1





2





NACK Prohibit Pkt2





NACK1





NACK2





3





4





NACK Prohibit Pkt3





NACK Prohibit Pkt4





NACK4





NACK3








NACK3








NACK2





Status Prohibit Pkt2





1





Receiver





Status Prohibit Pkt1





Polls





Sender





2





NACK1





3





4





Status Prohibit Pkt3, 4


















































































































































1
14

[image: image1][image: image17.bmp][image: image18.bmp]