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1. Introduction
In RAN 102 meeting, a new study item on Artificial Intelligence (AI)/Machine Learning (ML) for mobility in NR was approved [1]. In the study item scope, study and evaluate potential benefits and gains of AI/ML aided mobility for network triggered L3-based handover, considering the following aspects:
-	AI/ML based RRM measurement and event prediction, 
· Cell-level measurement prediction including intra and inter-frequency (UE sided and NW sided model) [RAN2]
· Inter-cell Beam-level measurement prediction for L3 Mobility (UE sided and NW sided model) [RAN2]
· HO failure/RLF prediction (UE sided model) [RAN2]
· Measurement events prediction (UE sided model) [RAN2]
-	Study the need/benefits of any other UE assistance information for the network side model [RAN2]
-	The evaluation of the AI/ML aided mobility benefits should consider HO performance KPIs (e.g., Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction) etc.) and complexity tradeoffs [RAN2]
· NOTE: Simulation assumption and methodology can leverage TR 38.901, 38.843 and 36.839. And leave the detail discussion to RAN2
-	Potential AI mobility specific enhancement should be based on the Rel19 AI/ML-air interface WID general framework (e.g. LCM, performance monitoring etc) [RAN2]  
· NOTE: This would only be treated after sufficient progress is made in the Rel-19 AI/ML air interface WID 
-	Potential specification impacts of AI/ML aided mobility [RAN2]
-	Evaluate testability, interoperability, and impacts on RRM requirements and performance [RAN4]
In this paper, a sub use case of cell-level measurement prediction based on AI/ML is proposed, and including the inputs, outputs and training methods of the AI/ML model.
2. Motivation
According to the existing handover mechanism, the handover is performed based on the historical measurements reported by each cell. Specifically, handover is triggered when the difference between the target cell’s RSRP measurements and the source cell’s RSRP measurements exceeds a predefined offset, and this condition persist even after the time to trigger (TTT) duration. When the mobility of the UE is low or the UE is moving in a macro cell, the above handover mechanism can maintain good performance. However, it could be problematic when either UE’s mobility is high or among micro cells of high density or both, where such scheme may result in more unintended event e.g., handover failure, radio link failure, ping-pong phenomenon, throughput loss or too early/late handover etc. This is because the traditional handover mechanism requires plenty of time to detect the decline of RSRP in the source BS and the increase of RSRP in the target BS, and the UE remains connected to the source cell until the handover is complete resulting in a sharp decline in signal quality during the handover. When the UE moves at a high speed or among micro cells of high density, frequent cell handover will occur, which will cause large fluctuations in the communication quality throughout the communication process, and the above phenomenon will occur. Benefiting from the strong environmental perception and learning capability, AI/ML technology can deal with the above impairments. In this paper, we propose a new sub use case of AI-based cell-level mobility management which can be utilized in scenarios where cell handover occurs frequently, including the inputs and outputs of the AI/ML.
3. AI-based cell-level mobility management
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Fig.1 The scenario of multi-cell mobility beam management

Without loss of generality, we take three cells as an example, as the train travels within the coverage area of the Cell-1, the target of the AI/ML model is to perform beam switching within the serving cell. As the train gradually moves away from the Cell-1, the communication quality of the serving cell will be lower than the predefined threshold. At this point, cell handover is executed, searching for the target cell to establish RRC reconfiguration. In the case of Figure 1, the train needs to quickly locate the target cell from Cell-2 and Cell-3. In this process, due to the high mobility of the train, using the traditional handover mechanism may lead to RLF, resulting in the failure of the handover. To solve this problem, we propose a new sub use case. The AI model is used to predict the L3-RSRP of each cell in the future instance, and trigger the handover event in advance based on prediction results when the link quality does not deteriorate completely, reducing the RLF rate. At the same time, for the handover of multiple cells which have multiple scenarios, a customized model with certain scenario generalization is needed to be designed. It is suitable for cells of different sizes, base stations of different heights and different types of channel models, reducing the complexity of network-side model deployment.
Proposal #1: For cell-level mobility management, consider a sub use case where the AI/ML model predicts the L3-RSRP of all cells in the future instances and using the predicted values to execute the cell handover procedure in advance. Meanwhile, the scenario generalization of the model needs to be considered to reduce the complexity of model deployment in network-side.

4 The AI/ML model details
Model input: In Rel-18, SID called FS_NR_AIML_air was studied extensively on physical layer centric use cases including spatial and temporal beam prediction. According to the sub use case we proposed, the AI model is utilized to predict RSRP of all cells in future instances, and the handover is executed in advance to reduce the rate of RLF. Thus, the cell-level mobility management mainly focuses on temporal prediction, where RSRP measurements of all beam pairs of all cells at historical instances are used to predict L3-RSRP for all cells in future instances. This is also the input to the AI/ML model that can be directly thought of. To reduce training overhead, consider further compressing the input of AI/ML models. The first approach selects partial cells at a regular interval from the original cells. The RSRP values of all beams from these selected cells are used to predict the RSRP values for all cells. Similarly, the second approach selects partial beams of all cells at a regular interval. In scenarios where high accuracy is not indispensable, sacrificing a small amount of accuracy can help reduce training overhead of AI models. The left side of Figure 2 represents the three inputs of the AI/ML model, where different colors or gray levels represent different signal strengths. The white area indicates data that has not been selected as input.
Model output: To reduce the training overhead of the AI/ML model, the output is not specified at the beam level. Instead, it only needs to provide the L3-RSRP for each cell. The cell handover procedure is then carried out based on these L3-RSRP to determine the target cell ID. Another output option is to directly provide the ID of the target cell, and re-establish a new communication link directly from the output of the AI/ML model.
Data collection: In order to solve the generalization of AI/ML models, improving the performance of the model in different scenarios, the generation of data sets should consider various scenarios, including different channel models, base station heights, the speed of UE, cell radii, and outdoor environments, etc. The UE traverses through different cells which have various scenarios following a random trajectory. The dataset generated at each sample comprises two components: first, the RSRP of all beams for all cells, and second, the contextual information of the serving cell at the current sampling point. This contextual information includes details such as base station height, channel model, etc.
Model training: During model training, when datasets from various scenarios are fed into the AI/ML model, the corresponding features of each scenario should also be input into the model. This method supplies additional learning information to the AI/ML model, enhancing its predictive performance across diverse scenarios. 
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Fig.2 The input and output of the AI/ML model

Proposal #2: Consider using RSRP measurements as well as scenario feature information such as channel model and base station height as input of the AI/ML model.
Proposal #3: For cell handover in multiple cells which have different scenarios, there are two reasonable outputs for AI/ML. 1) The L3-RSRP for all cells at future instances, 2) The ID of the target cell for cell handover.
6 Conclusion
In this paper, we propose a new sub use cases of AI-based cell-level mobility management, focusing on the input and output of AI/ML models for cell handover in multi-scenarios. Based on the discussion above, we propose the following proposals:
Proposal #1: For cell-level mobility management, consider a sub use case where the AI/ML model predicts the L3-RSRP of all cells in the future instances and using the predicted values to execute the cell handover procedure in advance. Meanwhile, the scenario generalization of the model needs to be considered to reduce the complexity of model deployment in network-side.
Proposal #2: Consider using RSRP measurements as well as scenario feature information such as cell size and base station height as input of the AI/ML model.
Proposal #3: For cell handover in multiple cells which have different scenarios, there are two reasonable outputs for AI/ML. 1) The L3-RSRP for all cells at future instances, 2) The ID of the target cell for cell handover.
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