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[bookmark: _Ref488331639][bookmark: OLE_LINK103]Introduction
[bookmark: OLE_LINK108]In RAN plenary # 102, the SID on AI mobility [1] is approved. The evaluation methodology relevant objectives covered in the SID are as follows:
· The evaluation of the AI/ML aided mobility benefits should consider HO performance KPIs (e.g., Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction) etc.) and complexity tradeoffs [RAN2]
· NOTE: Simulation assumption and methodology can leverage TR 38.901, 38.843 and 36.839. And leave the detail discussion to RAN2

This paper aims to extend the discussion by considering the general methodology of evaluation to verify the AI potential gain for mobility use cases.
[bookmark: OLE_LINK102][bookmark: OLE_LINK133]Discussion
[bookmark: OLE_LINK104][bookmark: OLE_LINK80]General Principle and Objective of the Methodology
[bookmark: OLE_LINK7][bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK1][bookmark: OLE_LINK6][bookmark: OLE_LINK20]AI-ML approaches have been shown to have huge potential to enhance wireless communication performance. One of the important goals of the AI mobility SID [1] is to identify potential use cases and validate the corresponding AI performance gains. Unlike non-AI methods whose performance may be analyzed through theoretical or mathematical derivation, verifying the performance of AI-ML approaches usually relies on evaluation results based on reasonable and representative datasets. 
[bookmark: OLE_LINK23][bookmark: OLE_LINK5][bookmark: OLE_LINK21][bookmark: OLE_LINK22][bookmark: OLE_LINK25]However, since the evaluation results depend on the scenario, setting, channel model, performance metric…, etc, discussions and alignments on various aspects of different use cases can easily diverge, making progress difficult and inefficient. Therefore, a general methodology is needed to establish aligned settings and assumptions and draw consistent conclusions from the evaluation results. The evaluation methodology is intended to provide a general guideline, where the corresponding settings and assumptions given in this paper can be regarded as a starting point and not intended to limit the scope of the AI mobility study.
[bookmark: OLE_LINK269][bookmark: OLE_LINK33][bookmark: OLE_LINK86][bookmark: OLE_LINK88]Proposal 1: The SI should draw consistent conclusions with sufficient evaluation results under aligned settings and assumptions. 
[bookmark: OLE_LINK18]Define the Optimization Objective  
[bookmark: OLE_LINK8][bookmark: OLE_LINK44]Since the design of the evaluation setting and assumptions are highly relevant to the problem to be solved and how AI will be applied, before the discussion of settings and assumptions, it is more important to define the optimization objective of the AI approaches. In general, we are looking at two main goals:
· Goal 1: Use AI to enhance mobility performance, e.g., reduce ping-pong, RLF, data interruption time or increase ToS, throughput, etc. This includes the topics of measurement target selection with AI prediction, HOF/RLF prediction, measurement event prediction, target cell prediction, etc.
· [bookmark: OLE_LINK89]Goal 2: Use AI to reduce the overhead with the acceptable handover performance degradation, e.g., reduce measurement, reference signal, measurement gap, power consumption, complexity, etc. This includes the topics of measurement gap reduction with AI prediction, temporal/spatial/frequency domain prediction for RRM measurement, etc.
[bookmark: OLE_LINK126][bookmark: OLE_LINK94][bookmark: OLE_LINK71]The details of the approaches should be further discussed in each use case. The following scenario selection, evaluation setting, and assumption should be carefully designed depending on the goal of AI approaches. Table 1 outlines the goals and their respective approaches for attainment. It is important to note that other methods are not precluded; in fact, various approaches may be combined to optimize system performance while managing overhead and energy consumption.
[bookmark: OLE_LINK57]Proposal 2: RAN2 studies the application of AI to achieve two goals: Goal 1 which aims to enhance mobility performance, and Goal 2 which seeks to reduce overhead and energy consumption. 
Proposal 3: Goal 1 includes the approaches of measurement event prediction, measurement target selection with AI prediction, HOF/RLF prediction, target cell prediction; Goal 2 includes the approaches of measurement gap reduction with AI prediction, temporal/spatial/frequency domain prediction for RRM measurement.
[bookmark: OLE_LINK50]Table 1 AI mobility optimization goals and approaches
	[bookmark: _Hlk163055144][bookmark: _Hlk163055162][bookmark: OLE_LINK45]Goal 1: Enhance mobility performance
	Goal 2: Reduce overhead

	· [bookmark: _Hlk163055137]Measurement event prediction
· Measurement target selection with AI prediction
· HOF/RLF prediction 
· Target cell prediction
	· Measurement gap reduction with AI prediction 
· Temporal/spatial/frequency domain prediction for RRM measurement 


Identify Scenario with Potential AI Benefits 
[bookmark: OLE_LINK24][bookmark: OLE_LINK42][bookmark: OLE_LINK107][bookmark: OLE_LINK55][bookmark: OLE_LINK26]To demonstrate the AI improvement, the evaluation scenario should be carefully considered based on the potential AI benefits. In the same scenario, the potential benefits of AI for the above two goals may be different. For Goal 1, we may need to consider the more challenging scenarios, e.g., FR2, high speed, heterogenous network, etc., since in the normal scenario, e.g., FR1, traditional (non-AI) HO performs well, the margin for AI to improve HO performance is relatively low. For Goal 2, we can consider both FR1 and FR2. Also, for the scenario with heavy overhead, e.g., inter-frequency scenario with numerous MOs and with short period measurement gap, the potential benefits could be high for Goal 2. 
[bookmark: OLE_LINK51][bookmark: OLE_LINK109][bookmark: OLE_LINK112][bookmark: OLE_LINK118]Proposal 4: For different goals we need to design different settings and scenarios based on the potential AI benefits. Consider FR2, high-speed scenarios for Goal 1, and consider both intra-frequency and inter-frequency deployment for Goal 2 as a starting point. 
Table 2 High potential benefits scenarios for Goal 1 and Goal 2
	Goal 1: Enhance mobility performance
	Goal 2: Reduce overhead

	Challenging scenario: FR2, heterogenous network, high-speed UE, etc.
	Heavy overhead scenario: inter-freq measurement, short measurement gap repetition period, numerous MOs, etc.



[bookmark: OLE_LINK114][bookmark: OLE_LINK29][bookmark: OLE_LINK87]Design Evaluation Case and Align Settings and Assumptions 
[bookmark: OLE_LINK116][bookmark: OLE_LINK113]Once the objective is identified, a detailed design of the evaluation case should be provided to verify the AI benefits. It may contain the selection of scenarios, the design of the conventional non-AI approaches as benchmark (for comparison and deriving the AI performance gain), and the design of control experiments for the different settings (for verifying the correct understanding of where the AI benefits come from). Certain level alignment of evaluation setting and assumption is also necessary to derive the convergent conclusion. 
[bookmark: OLE_LINK115][bookmark: OLE_LINK120]Validate Analysis and Result through Simulation 
[bookmark: OLE_LINK121][bookmark: OLE_LINK122][bookmark: OLE_LINK123]At last, provide the simulation result to verify the analysis and the benefits of AI approaches. It should be noted that simulation is just one component of the evaluation methodology and comes into play at the final stage. It is more important to have a clear methodology to know why and what AI can improve mobility performance. Based on that, we will have a clearer picture of the necessary simulation settings and assumptions. 
[bookmark: OLE_LINK119]Proposal 5: RAN2 adopts a goal-oriented evaluation methodology. The objective and the AI benefits are defined and identified first, then the evaluation and assumption are designed to verify the analysis and result.
[bookmark: OLE_LINK117][bookmark: OLE_LINK12][bookmark: OLE_LINK2]Dataset Assumption 
[bookmark: OLE_LINK63][bookmark: OLE_LINK64]Datasets play an important role in AI approaches. As a studying item, considering the resources and workload, it is more appropriate to generate data from the simulation platform. The SLS simulation with settings given in TR 38.901 can be the baseline. Field data is not precluded if the company can provide a detailed description of the dataset. Also, shared and public data could be an option for all the companies without the capability of data generation to join the evaluation and discussion.
[bookmark: OLE_LINK66][bookmark: OLE_LINK68][bookmark: OLE_LINK67]Proposal 6: Generating dataset by SLS simulation with the setting given in TR 38.901 can be the baseline. Field data with description can be an option, while shared and public datasets are allowed.  
[bookmark: OLE_LINK14]Channel Model
[bookmark: OLE_LINK9][bookmark: OLE_LINK69]The channel model given in TR 38.901 may serve as a baseline. Both LOS and NLOS models should be considered. Additionally, spatial consistency should be considered, especially for use cases where AI methods are applied to predict future states.
[bookmark: OLE_LINK43][bookmark: OLE_LINK78]The channel model given in TR 38.901 is widely used in 3gpp discussions, but one thing should be noted the channel model in TR 38.901 is a stochastic model, where the channel is constructed based on random parameters. It is suitable for simulating average system performance. However, it is not intended to model real channel changes in the case of a UE moving over a determined scenario/deployment. This random feature will limit the effectiveness of scene-based AI approaches to some extent. For example, AI prediction usually relies on learning UE trajectories, building locations, gNB locations, etc. from training data in the same scenario. This information is relatively difficult to learn from stochastic models. According to the observation, some deterministic channel models, e.g., the Ray-tracing model, could be discussed as a possible option.   
[bookmark: OLE_LINK19][bookmark: OLE_LINK30][bookmark: OLE_LINK58][bookmark: OLE_LINK46][bookmark: OLE_LINK31]Observation 1: It is difficult for the scene-based AI approach to learn the scene-specific information, e.g., location of buildings, gNB, beam direction, etc, from the stochastic channel model in TR 38.901. Deterministic channel models, e.g., the ray-tracing model, are expected to exploit the higher potential for AI approaches.  
[bookmark: OLE_LINK70][bookmark: OLE_LINK90]Proposal 7: The channel model in TR 38.901 with spatial consistency could be a baseline for dataset generation. Deterministic channel models, e.g., the ray-tracing model, can be discussed later to exploit the AI potential gain.
[bookmark: OLE_LINK15]Frequency Band
[bookmark: OLE_LINK61][bookmark: OLE_LINK124]The HO performance is closely correlated to the operation frequency band. In general, HO performs relatively stable in FR1 compared to FR2, due to the nature characteristics of signal attenuation in the high-frequency band and the limited coverage. As mentioned in Proposal 4, both FR1 and FR2 should be considered. Higher AI potential benefit is expected in the challenging FR2 (compared to FR1) for the case of applying AI to enhance mobility performance, while for the case of applying AI to reduce the measurement overhead, the potential benefits should be higher in FR1 (compared to FR2). 
[bookmark: OLE_LINK73]Proposal 8: Consider both FR1 and FR2 for AI mobility evaluation.
Deployment 
[bookmark: OLE_LINK72]The common hexagonal grid deployment with 21 cells (7 sites with 3 cells per site), which is considered in TR 38.843 AI-BM use case, can be the starting point. The more challenging heterogeneous network deployment, which is discussed in TR 36.839, could be an advanced option. As observed in TR 36.839, legacy HO performs worse in heterogeneous networks, especially for high-speed UE. This also provides the chance and reason for using AI to improve the legacy HO.

UE Trajectory
[bookmark: OLE_LINK77][bookmark: OLE_LINK75][bookmark: OLE_LINK74][bookmark: OLE_LINK76][bookmark: OLE_LINK13][bookmark: OLE_LINK79]UE trajectory is another key factor that will affect AI mobility performance, especially for those cases applying AI for prediction. It is much easier for AI to perform accurate predictions with a simple UE trajectory, e.g., a straight line with fixed speed. In TR 38.843, the pattern of linear trajectory with random direction change is considered for AI-BM case, it can be considered as the starting point. However, such random patterns do not fit realistic scenarios, since the UE can not move across buildings and other blockage. Also, with the consideration of the stochastic property of the channel model given in TR 38.901, the random pattern will further limit the prediction capability of AI approaches. Therefore, some more deterministic patterns could be FFS, for example, the fixed road map pattern, where the map with fixed roads is pre-defined and UE can move along the road and change direction randomly for each intersection. It reflects the limitation of UE movement, e.g., can not move across buildings, but still keep the randomness of the UE trajectory. Other UE trajectories can also be considered, e.g., the straight-line pattern.
[bookmark: OLE_LINK84][bookmark: OLE_LINK81]Proposal 9: The UE trajectory with random direction changes considered in TR 38.843 can be a starting point, while other more deterministic trajectories, e.g., fixed road map and straight line pattern, are FFS.
[bookmark: OLE_LINK129]Measurement Assumption
[image: ]
[bookmark: OLE_LINK127]Figure 1: Illustration of the relation between data and available AI model input
[bookmark: OLE_LINK47][bookmark: OLE_LINK83][bookmark: OLE_LINK82]When the simulator generates a dataset, it typically generates all the data, e.g., the RSRP value for all the considering link pairs for the entire simulation time. However, it should be noted that, as shown in Figure 1, not all the data in the dataset can be regarded as the available AI model input. If we consider the practical RF limitation, only those MOs that are measured could be used as AI input. Based on the common understanding, RF limitations include the following assumptions (1) UE cannot measure different MOs with different frequency layers simultaneously (2) UE cannot measure a MO with different Rx beams simultaneously (3) UE can only measure the MO within the measurement gap if Rx switching is needed.
[bookmark: OLE_LINK49]The reason for considering the measurement assumptions includes (1) prevent using extra information, which is unreasonable in practical case (2) reflect the real measurement latency, which may not be negligible in AI mobility evaluation. For example, consider 3 different MOs with 40ms smtc, the measurement interval will increase from 40 ms to 120ms (measure each MO one by one) if RF limitation is considered. This measurement latency could bring a huge impact for those use cases where AI is applied to optimize the event triggering timing. (3) reflect the impact of the measurement gap configuration, which is the main focus for some topics, e.g., measurement gap reduction.   
[bookmark: OLE_LINK59][bookmark: OLE_LINK27][bookmark: OLE_LINK85]Proposal 10: Take into account the difference between the available data in the dataset and the available AI inference input, especially if the dataset contains the measurement of all nodes which is not attainable for UE due to the RF limitation. 
[bookmark: OLE_LINK36]Performance Metric

[bookmark: OLE_LINK48][image: ]
Figure 2: Illustration of intermediate KPI and system KPI
[bookmark: OLE_LINK52][bookmark: OLE_LINK53]Aligned KPIs are essential to compare the evaluation results. In AI mobility SID, we can consider two different types of KPI, i.e., intermediate KPI and system KPI. Intermediate KPIs are used to examine the AI capability, which can be the prediction accuracy of beam RSRP, cell RSRP, cell id, RSRP-diff, etc. Aligning the available AI model input and intermediate KPIs is sufficient for the comparison of AI capability, other alignments are optional. 
[bookmark: OLE_LINK32][bookmark: OLE_LINK34][bookmark: OLE_LINK39][bookmark: OLE_LINK41][bookmark: OLE_LINK54][bookmark: OLE_LINK60]On the other hand, System KPIs are used to verify the overall system enhancement, which can be HOF, Ping-Pong, ToS, throughput, etc. The evaluation of system performance is necessary for verifying the overall AI performance enhancement. However, the comparison and alignment of the system performance are challenging, since it depends on the implementation of UE/NW action and HO procedure, and thus, can be low priority.
[bookmark: OLE_LINK38][bookmark: OLE_LINK62][bookmark: OLE_LINK65]Proposal 11: Define intermediate KPI and system KPI for AI model capability verification and overall system performance gain verification, respectively. The intermediate KPI includes the prediction accuracy, RSRP-diff, RMSE, MSE. The system KPI includes HOF times/rate, Ping-pong times/rate, average TOS, data interruption time, throughput. Other metrics are not precluded. 
Generalization
[bookmark: OLE_LINK56]Generalization ability is an important part of AI approaches, it implies their application range. If an AI model can only be applied to the scenario with almost the same characteristics as the training data, for example, same UE speed, same channel situation, same frequency band, etc, it will limit the value of AI model, or even worst it will make the AI model cannot be used. Thus, once the potential AI benefits have been proven in some use cases, the generalization capability should be considered. Furthermore, the generalization performance is a key factor in determining how LCM should work for AI/ML models in AI-based mobility. 
[bookmark: OLE_LINK40][bookmark: OLE_LINK91]Proposal 12: The generalization ability of the AI approaches should be evaluated once the AI benefits have been proven.
[bookmark: OLE_LINK134]Conclusion
[bookmark: OLE_LINK28][bookmark: OLE_LINK37]General principle:
[bookmark: OLE_LINK105]Proposal 1: The SI should draw consistent conclusions with sufficient evaluation results under aligned settings and assumptions.  
Proposal 2: RAN2 studies the application of AI to achieve two goals: Goal 1 which aims to enhance mobility performance, and Goal 2 which seeks to reduce overhead and energy consumption. 
Proposal 3: Goal 1 includes the approaches of measurement event prediction, measurement target selection with AI prediction, HOF/RLF prediction, target cell prediction; Goal 2 includes the approaches of measurement gap reduction with AI prediction, temporal/spatial/frequency domain prediction for RRM measurement.
Proposal 4: For different goals we need to design different settings and scenarios based on the potential AI benefits. Consider FR2, high-speed UE for Goal 1, and consider both intra-frequency and inter-frequency for Goal 2 as a starting point.
Proposal 5: RAN2 adopts a goal-oriented evaluation methodology. The objective and the AI benefits are defined and identified first, then the evaluation and assumption are designed to verify the analysis and result.

Evaluation settings and assumptions:
Proposal 6: Generating dataset by SLS simulation with the setting given in TR 38.901 can be the baseline. Field data with description can be an option, while shared and public datasets are allowed.  
Observation 1: It is difficult for the scene-based AI approach to learn the scene-specific information, e.g., location of buildings, gNB, beam direction, etc, from the stochastic channel model in TR 38.901. Deterministic channel models, e.g., the ray-tracing model, are expected to exploit the higher potential for AI approaches.  
Proposal 7: The channel model in TR 38.901 with spatial consistency could be a baseline for dataset generation. Deterministic channel models, e.g., the ray-tracing model, can be discussed later to exploit the AI potential gain.
Proposal 8: Consider both FR1 and FR2 for AI mobility evaluation.
Proposal 9: The UE trajectory with random direction changes considered in TR 38.843 can be a starting point, while other more deterministic trajectories, e.g., fixed road map and straight line pattern, are FFS.
Proposal 10: Take into account the difference between the available data in the dataset and the available AI inference input, especially if the dataset contains the measurement of all nodes which is not attainable for UE due to the RF limitation. 
[bookmark: OLE_LINK35]Proposal 11: Define intermediate KPI and system KPI for AI model capability verification and overall system performance gain verification, respectively. The intermediate KPI includes the prediction accuracy, RSRP-diff, RMSE, MSE. The system KPI includes HOF times/rate, Ping-pong times/rate, average TOS, data interruption time, throughput. Other metrics are not precluded. 
Proposal 12: The generalization ability of the AI approaches should be evaluated once the AI benefits have been proven..
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