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[bookmark: _Ref488331639][bookmark: OLE_LINK102]Introduction
In RAN plenary # 102, the SID on AI mobility [1] is approved. There are three use cases in the scope of the SID. One of them includes the AI/ML based RRM measurement prediction, the corresponding description is provided below. 
	· AI/ML based RRM measurement and event prediction, 
· Cell-level measurement prediction including intra and inter-frequency (UE sided and NW sided model) [RAN2]
· Inter-cell Beam-level measurement prediction for L3 Mobility (UE sided and NW sided model) [RAN2]


In the paper, we consider the use case under the scope that aims to reduce the need of the measurement gap by AI measurement prediction. 
Motivation - UE RF limitation
[bookmark: OLE_LINK15]Measurement is essential for performing handover as well as enabling CA/DC operation and also a huge overhead for the system, especially when the measurement of multiple measurement objects (MOs) with different frequency layers is needed. 
[bookmark: OLE_LINK19][bookmark: OLE_LINK18][bookmark: OLE_LINK109]Measurement of serving and neighbor cells is the fundamental part of any mobility procedure. Due to the RF limitation, a measurement gap is needed for UE to perform the Rx carrier frequency switching. Based on the common understanding, we consider assumptions (1) UE cannot measure different MOs with different frequencies simultaneously (2) UE cannot measure MO with different Rx beams simultaneously (3) If RF retuning is needed, MO can only be measured within MG, this includes inter-frequency measurement and some cases of intra-frequency measurement (e.g., when the DL BWP is not aligned on the target SSB as shown in Figure 1).
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[bookmark: OLE_LINK21]Figure 1: measurement with measurement gap for intra-frequency cases
Figure 2 provides an example to demonstrate the impact of measurement behavior when the practical RF limitation is considered. Consider a UE with 4 different Rx beams and three different MOs with different frequency layers configured by the NW. Assume all MOs have the same SMTC period and offset (resource conflict) and measurement gap repetition period is the same as STMC period (40ms). Consider a simple measurement scheduler that UE measures all the MO in turn (As we know the measurement selection/scheduler is UE-implementation, here we just use the simplest way to demonstrate the impact of considering RF limitation). UE needs 40*3*4 = 480ms (SMTC * # of MO * # of Rx beams) to measure all measurement targets, which results in a huge measurement latency (i.e., the interval for refreshing the measurement results of the same MO is quite long).   
[image: ]
Figure 2: Illustration of the inter-frequency measurement with RF limitation 
[bookmark: OLE_LINK23]The measurement latency will also affect the HO performance, for example, the high latency may delay the detection of the target cell and thus delay the triggering of the measurement report, which may result in RLF as well as too late HO. Obviously, a shorter measurement gap period configuration can reduce the latency, however, as we mentioned more frequent measurement gap implies more overhead, which should be prevented. 
[bookmark: OLE_LINK99]Observation 1: RF limitations need to be considered, or it will fail to address the impact of measurement gap and measurement latency to the mobility performance. 
[bookmark: OLE_LINK22][bookmark: OLE_LINK1]Proposal 1: The SI for AI mobility should address the impacts of UE RF limitation that (1) UE can not measure different MOs with different frequency layers simultaneously (2) UE can not measure a MO with different Rx beams simultaneously (3) UE can only measure a MO within the measurement gap if RF retuning is needed.
[bookmark: OLE_LINK92]Measurement Gap Reduction with AI Prediction
Due to the RF limitation, UE cannot measure different MOs with different frequencies simultaneously. When the UE needs to measure MO carried in the frequency layer differing from the current operation configuration, it needs to switch the Rx carrier frequency, and thus, measurement can only be performed within the measurement gap (MG). The Rx switching will take additional power consumption and the use of MG means no DL/UL can be transmitted. Therefore, reducing the need for MG can save the huge overhead of the system. Thus, the above RF limitation and the crucial overhead of measurement gap motivate studying the measurement gap reduction with AI prediction. However, the overall system performance should not be sacrificed due to the measurement gap reduction by AI prediction. 
Proposal 2 One goal of AI/ML-based RRM prediction is to investigate approaches that minimize the need of measurement gap, while maintaining system performance comparable to those achieved by conventional non-AI mechanisms.
[bookmark: OLE_LINK13][bookmark: OLE_LINK17]Description
[bookmark: OLE_LINK25][bookmark: OLE_LINK26][bookmark: OLE_LINK28][bookmark: OLE_LINK29][bookmark: OLE_LINK54][bookmark: OLE_LINK55]AI/ML approaches can be used to predict future measurement results based on the history of the measurement samples. Figure 3 illustrates an example of applying AI prediction at the UE side to reduce the measurement within the measurement gap. In this case, we consider the intra-freq measurement with the SSB is not included in the DL BWP, which means, Rx switching and measurement gap are needed for measurement. The measurement gap configuration is given by (repetition period, length) = (20ms, 5.5ms). For the normal case, UE can measure MO in every given measurement gap, as shown in the top case in the figure, where the green part indicates the measurement in the MG and the number represents the time index. With the AI prediction, we can reduce half the measurement within the MG as shown in the medium case in the figure, where the measurement in the red part can be replaced by the AI prediction. The prediction could be the temporal domain prediction, for example, use measurements 1, 3, 5, 7 to predict measurement 8. Based on the prediction, a 50% measurement gap reduction can be achieved at the UE side. Furthermore, once the capability of AI prediction is admitted by the NW side, UE may suggest enlarging the measurement gap repetition period from 20ms to 40ms. In this example, halving the measurement gap frequency could effectively lead to an increase of ~ 20% in the radio resources available to the UE.  
[image: ]
Figure 3: measurement reduction with AI prediction
[bookmark: OLE_LINK30][bookmark: OLE_LINK31]The measurement gap reduction brings a significant gain but will also degrade the HO performance. To verify the system degradation and the AI performance gain, we consider a non-AI baseline in the bottom case in the figure. In the non-AI (e.g., sample and hold case), the UE measures half measurement, e.g., 1,3,5,7, and directly uses those measurements as the real measurement of 2,4,6,8. It should be noted that a baseline comparison is necessary, that verifies whether the performance degradation is acceptable due to the AI prediction or it is just because there is no need to measure that frequently in the case.
In this experiment, we utilize temporal domain prediction of the same frequency to reduce the need of measurement gap. However, it’s possible to utilize frequency domain prediction or in combination with temporal domain prediction, which needs to be explored in the future. 
In addition, changes in measurement gap configuration may have an impact on measurement requirements, which should be discussed further in RAN4, but, as a starting point, we can first develop and verify AI capabilities and corresponding performance gains in RAN2. 
[bookmark: OLE_LINK52][bookmark: OLE_LINK100][bookmark: OLE_LINK41]Observation 2: Extending the measurement gap repetition period from 20ms to 40ms, with a fixed 5.5ms measurement gap length, can provide roughly 20% available resource gain for the UE.
Simulation Results
The initial evaluation is provided to discuss the system HO performance loss due to the measurement gap reduction. The dataset is generated by the SLS simulation based on the setting given in TR 38.901 [2]. The detailed parameter settings can be found in the Appendix. Three different cases, e.g., normal (no MG reduction), AI (with MG reduction), and sample and hold (MG reduction with non-AI method) are considered as mentioned in the description of Figure 3 in the previous section. 
For the AI approach, we use 10 previously available measurements, e.g., L1 RSRP of all cells, to predict the next measurement result. Then UE assumes the prediction is the real measurement and uses them (and other real measurements) to trigger the measurement report and executes the normal HO procedure.
The simulation results are provided to show the comparisons among normal case, AI case, and non-AI. The system performance metrics include mobility fail (HO fail + RLF), number of HO, ping-pong rate, and the total data interruption time (due to HO proc, HO fail, and RLF). The preliminary simulation results show that with the help of AI prediction, the HO system performance loss, e.g., the mobility fail, ping-pong, and corresponding data interruption time, is acceptable. However, the sample and hold case suffered a relatively large performance loss compared to the AI case, especially for the ping-pong and data interruption time, which indicates the performance gain from the AI approach. 
Figures 5 and 6 provide the system performance comparison for the case where 1/2 measurement gap is used (~20% available resource gain). While Figures 7 and 8 provide the comparison for the case where only 1/8 measurement gap is used (~33% available resource gain). Similar trends as mentioned above are observed in two experiments. 

Figure 4: HOF and Ping-Pong (1/2 measurement gap)

Figure 5: Data interruption rate (1/2 measurement gap)

Figure 6: HOF and Ping-Pong (1/8 measurement gap)

Figure 7: Data interruption rate (1/8 measurement gap)
Observation 3 With AI/ML temporal domain prediction, reducing the measurement gap to 1/2 or even 1/8 does not compromise mobility performance compared with legacy L3 HO in the metrics such as HOF, Ping-pong, data interruption time and average TOS. While the non-AI sample and hold has the worst performance. 
[bookmark: OLE_LINK45][bookmark: OLE_LINK58][bookmark: OLE_LINK3][bookmark: OLE_LINK2]Proposal 3: RAN2 studies AI/ML prediction in temporal and/or frequency domain to reduce measurement gap for both intra-frequency and inter-frequency RRM measurement. 
[bookmark: OLE_LINK33][bookmark: OLE_LINK34][bookmark: OLE_LINK6][bookmark: OLE_LINK93]Proposal 4: The baseline with conventional non-AI mechanism, e.g., sample and hold is required for performance evaluation for measurement gap reduction with AI prediction. 
Measurement Target Selection with AI Prediction
[bookmark: OLE_LINK51][bookmark: OLE_LINK32][bookmark: OLE_LINK27][bookmark: OLE_LINK43]Besides reducing the measurement gap with AI prediction, another option is to use AI prediction to select the measurement target, especially when multiple measurement objectives are configured and required to be measured. Given the constraints of UE radio frequency capabilities and measurement latency, there may not be sufficient time for the UE to measure the target cell or transmit the measurement report to the network, particularly when the UE is moving at high speeds. A simple example to inspire the idea is given below. Assume three different MOs are configured by NW, however, if UE detects, by AI prediction, that the cells in the freq 1 and freq 2 are relatively weak, it can prioritize the measure of MO with freq 3. 
[bookmark: OLE_LINK44]Focus on high-priority MO measurement can reduce the measurement latency for that MO. On the other hand, if UE can reduce the measurement of low-priority MOs, it also implies the possibility of reducing the use of measurement gaps. Actually, this approach provides a relatively low-risk way to utilize AI prediction. The prediction is not considered a real measurement and is not used to trigger the measurement report. Instead, the prediction is applied to select/schedule the next measurement target, and the event is still triggered based on the real measurement.
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[bookmark: OLE_LINK50]Figure 4: Example of using AI to prioritize measurement target
[bookmark: OLE_LINK49][bookmark: OLE_LINK101]Proposal 5: RAN2 studies AI/ML prediction for measurement target selection for both intra-frequency and inter-frequency RRM measurement to improve measurement efficiency at the UE side as well as the system performance. 
Proposal 6: RAN2 exploits and verifies the performance gains with AI prediction to reduce the measurement gap or to select the measurement target effectively. The impact of measurement requirements can be discussed in RAN4.
[bookmark: OLE_LINK134]Conclusion
Observations:
[bookmark: OLE_LINK5][bookmark: OLE_LINK42][bookmark: OLE_LINK53]Observation 1: RF limitations need to be considered, or it will fail to address the impact of measurement gap and measurement latency to the mobility performance. 
Observation 2: Extending the measurement gap repetition period from 20ms to 40ms, with a fixed 5.5ms measurement gap length, can provide roughly 20% available resource gain for the UE.
Observation 3 With AI/ML temporal domain prediction, reducing the measurement gap to 1/2 or even 1/8 does not compromise mobility performance compared with legacy L3 HO in the metrics such as HOF, Ping-pong, data interruption time and average TOS. While the non-AI sample and hold has the worst performance. 
Motivation
Proposal 1: The SI for AI mobility should address the impacts of UE RF limitation that (1) UE can not measure different MOs with different frequency layers simultaneously (2) UE can not measure a MO with different Rx beams simultaneously (3) UE can only measure a MO within the measurement gap if RF retuning is needed.
Measurement gap reduction with AI prediction
Proposal 2 One goal of AI/ML-based RRM prediction is to investigate approaches that minimize the need of measurement gap, while maintaining system performance comparable to those achieved by conventional non-AI mechanisms.
Proposal 3: RAN2 studies AI/ML prediction in temporal and/or frequency domain to reduce measurement gap for both intra-frequency and inter-frequency RRM measurement. 
Proposal 4: The baseline with conventional non-AI mechanism, e.g., sample and hold is required for performance evaluation for measurement gap reduction with AI prediction. 
Measurement Target selection with AI prediction
Proposal 5: RAN2 studies AI/ML prediction for measurement target selection for both intra-frequency and inter-frequency RRM measurement to improve measurement efficiency at the UE side as well as the system performance. 
RAN2/RAN4
Proposal 6: RAN2 exploits and verifies the performance gains with AI prediction to reduce the measurement gap or to select the measurement target effectively. The impact of measurement requirements can be discussed in RAN4.
[bookmark: OLE_LINK135]Reference
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Annex-Simulation assumption
	Simulation setting
	Value or assumptions 

	Deployment
	21 cells with ISD-200m；7 sites, 3 sectors/cells per site

	Channel model
	UMa

	Frequency and BW
	FR2 @30GHz, 50Mhz BW

	Beam setting
	Horizontal: 12; Vertical: 2
Total: 24 beams

	Sub-carrier spacing
	60KHz

	BS Total TX power 
	46 dBm 

	BS height
	25m

	Minimum distance
	Minimum distance between UE and regular node. >=35m

	UE trajectory
	Linear trajectory with random direction change (ref R18 AI-BM)

	UE speed
	30km/h

	Target MO smtc
	20ms

	Mea. gap period
	20ms

	AI input
	Previous 10 available measurement samples (L1 RSRP)

	AI output
	Next measurement sample (L1 RSRP)

	AI model 
	CNN

	Evaluation time
	200s for each UE (total 8 UE trajectories)



HO fail/success/PP (times per min)

30km/h	Normal	
AllMobFail	HO succ per min	PP rate	0.63765941485371347	7.0142535633908478	0.75018754688672162	30km/h	Half (AI)	
AllMobFail	HO succ per min	PP rate	0.60015003750937734	7.5393848462115525	0.75018754688672162	30km/h	Half (S	&	H)	
AllMobFail	HO succ per min	PP rate	0.71267816954238561	8.9272318079519888	1.762940735183796	



Data interrpution rate

DIT rate Mob	
Normal	AI	S	&	H	30km/h	1.17E-2	1.2500000000000001E-2	1.47E-2	DIT rate RLF	
Normal	AI	S	&	H	30km/h	4.4999999999999997E-3	4.4999999999999997E-3	5.3E-3	



HO fail/success/PP (times per min)

30km/h	Normal	
AllMobFail	HO succ per min	PP rate	0.60015003750937734	7.0517629407351841	0.78769692423105775	30km/h	AI	
AllMobFail	HO succ per min	PP rate	0.75018754688672162	8.8147036759189792	1.2378094523630907	30km/h	S	&	H	
AllMobFail	HO succ per min	PP rate	0.67516879219804948	14.066016504126031	4.5011252813203297	



Data interruption rate

DIT rate Mob	
Normal	AI	S	&	H	30km/h	1.17E-2	1.46E-2	2.3300000000000001E-2	DIT rate RLF	
Normal	AI	S	&	H	30km/h	4.4999999999999997E-3	5.5999999999999999E-3	4.8999999999999998E-3	
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