3GPP TSG-RAN WG2 Meeting #124	R2-2312471
Chicago, USA, 13th – 17th November 2023

Agenda item:		7.5.3
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK36]Source:		Lenovo
Title:		Discussion of DRX enhancement
Document for:		Discussion and Decision
1. Introduction
RAN2#123 and RAN2#123bis has reached the following agreement on DRX enhancement：
	· The maximum value of the counter (NSFN) is 2^16 -1= 65535.
· Network sets DRX reference SFN (drx-ReferenceSFN) to either 0 or 512, in the same way as in Rel-16 IIoT.
· both the counter NSFN and the DRX reference SFN drx-ReferenceSFN are added to the DRX formula. NSFN is initialized to 0.
· New DRX cycles in rational numbers are supported for both short and long DRX cycles.
· If short DRX cycle in rational number is configured, the length of the long DRX cycle shall be an integer multiple of the short DRX cycle, as in legacy.	
· The new DRX parameter(s) for non-integer DRX cycles are common to both DRX groups
· At least use legacy formula and add floor () operation.
· We will have normative text to avoid rounding errors.
· specify the DRX cycle by different fields under a CHOICE structure and specify in the field description the correspondence between different fields and DRX cycles

In this contribution we further discuss how to capture the normal text to avoid rounding errors based on the DRX formula.
2. [bookmark: Proposal_Beacon]Discussion
There is a following EN below the DRX formula in the running MAC CR:
1> if the Long DRX cycle is used for a DRX group and the drx-NonIntegerLongCycle is configured for the DRX group, and floor([(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = floor([(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerLongCycle))
“Editor’s Notes: FFS whether more details of the modulus operation on drx-NonIntegerShortCycle or drx-NonIntegerLongCycle need to be specified to avoid rounding errors in the operation.”

To avoid this potential rounding error based on the formula, some alternative implementations in normative text are proposed to address this issue by replacing the modulo operation:
· Alt 1. the formula implementation based on equivalence A modulo B = A – B × floor (A / B)
floor [n – [drx-NonIntegerLongCycle × floor (n / drx-NonIntegerLongCycle)]] = floor [drx-timeReferenceSFN × 10 + drx-StartOffset – [drx-NonIntegerLongCycle× floor ((drx-timeReferenceSFN × 10 + drx-StartOffset) / drx-NonIntegerLongCycle)]] ---------------------------(1)
floor [n – [drx-NonIntegerLongCycle × floor (n / drx-NonIntegerShortCycle)]] = floor [drx-timeReferenceSFN × 10 + drx-StartOffset – [drx-NonIntegerShortCycle× floor ((drx-timeReferenceSFN × 10 + drx-StartOffset) / drx-NonIntegerShortCycle)]] ---------------------------(2)
where n = [(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number]
· Alt 2. the formula implementation based on equivalence A modulo B = C, A= C+ floor (N×B), N>=0, and presents the Nth DRX cycle
For example, A = DRX_SFN_COUNTER × 10240 + SFN × 10 + subframe number, B = drx-NonIntegerLongCycle, C =drx-timeReferenceSFN × 10 + drx-StartOffset.
(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number = floor (drx-timeReferenceSFN × 10 + drx-StartOffset + N × drx-NonIntegerLongCycle)---------------------------(3)
[(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] = floor[(drx-TimeReferenceSFN × 10) + drx-StartOffset + N × drx-NonIntegerShortCycle]---------------------(4)
· Alt 3. that modulus (A, B) can be implemented by A modulus (B/C) = (A C/C) modulus (B/C) = [(A C) modulus B] / C, where both B and C are integers. For example, if frame rate is 60 fps or DRX cycle is 50/3 msec, then B = 50 and C = 3.
floor [[[[(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] C] modulus B]/C] = floor [[[[(drx-TimeReferenceSFN × 10) + drx-StartOffset] C] modulusB]/C] ---------------------------(5)

Alt1 is the most complex and should be hence excluded. Alt 2 and Alt 3 is workable. Alt 2 is similar as the formula as for Rel-16 CG, the calculation burden of Alt 2 is obviously least among the above 3 alternatives. Therefore, Alt 2 is slightly preferred. To keep the formular in the draft CR as it was and add one note to capture A modulo B = C based on the equivalence A= C + floor (N×B) as a simple implementation for UE to avoid the rounding error.

Observation 1: To avoid the potential rounding error, Alt1 is the most complex and should be excluded.
Observation 2: Alt 2 and Alt 3 is workable, using the modulus operation A modulo B = C based on the equivalence A= floor (C+ N×B) has least calculation burden.

Proposal 1: RAN2 to agree both Alt 2 and Alt 3 can be an equivalence implementation of the modulo operation:
· Alt 2: A modulo B = C can be implemented by A= C+ floor (N×B), N presents the Nth DRX cycle. E.g., A = DRX_SFN_COUNTER × 10240 + SFN × 10 + subframe number, B = drx-NonIntegerLongCycle, C =drx-timeReferenceSFN × 10 + drx-StartOffset.
· Alt 3: modulus (A, B) can be implemented by A modulus (B/C) = (A C/C) modulus (B/C) = [(A C) modulus B] / C, where both B and C are integers. E.g., if frame rate is 60 fps or DRX cycle is 50/3 msec, then B = 50 and C = 3, floor [[[[(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] C] modulus B]/C] = floor [[[[(drx-TimeReferenceSFN × 10) + drx-StartOffset] C] modulusB]/C]
3. Conclusion
In this contribution, we discuss DRX enhancements for XR traffic. We have the following proposals and observations:
Observation 1: To avoid the potential rounding error, Alt 2 using the modulus operation A modulo B = C based on the equivalence A= floor (C+ N×B) has least calculation burden.

Proposal 1: RAN2 to agree both Alt 2 and Alt 3 can be an equivalence implementation of the modulo operation:
· Alt 2: A modulo B = C can be implemented by A= C+ floor (N×B), N presents the Nth DRX cycle. E.g., A = DRX_SFN_COUNTER × 10240 + SFN × 10 + subframe number, B = drx-NonIntegerLongCycle, C =drx-timeReferenceSFN × 10 + drx-StartOffset.
· Alt 3: modulus (A, B) can be implemented by A modulus (B/C) = (A C/C) modulus (B/C) = [(A C) modulus B] / C, where both B and C are integers. E.g., if frame rate is 60 fps or DRX cycle is 50/3 msec, then B = 50 and C = 3, floor [[[[(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] C] modulus B]/C] = floor [[[[(drx-TimeReferenceSFN × 10) + drx-StartOffset] C] modulusB]/C]
4. References
RAN2#123 chairman note.
RAN2#123bis chairman note.
R2-239964, Discussion of DRX enhancement, Lenovo
R2-2309316, Introduction of XR enhancements to TS 38.321, Qualcomm
ANNEX
38.321 v17.5.0
5.7	Discontinuous Reception (DRX)
-- skipped text ---
The MAC entity shall ensure no rounding error is generated when performing the modulus operation with drx-NonIntegerShortCycle or drx-NonIntegerLongCycle as the divisor.
The modulus operation A modulo B = C based on the equivalence A= floor (C+ N×B), N is integer and presents the Nth DRX cycle, i.e., the formula can implement as (DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number = floor (drx-timeReferenceSFN × 10 + drx-StartOffset + N × drx-NonIntegerLongCycle) ; or
The modulus (A, B) can be implemented by A modulus (B/C) = (A C/C) modulus (B/C) = [(A C) modulus B] / C, where both B and C are integers. E.g., if frame rate is 60 fps or DRX cycle is 50/3 msec, then B = 50 and C = 3, floor [[[[(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] C] modulus B]/C] = floor [[[[(drx-TimeReferenceSFN × 10) + drx-StartOffset] C] modulus B]/C].
-- skipped text ---
1

