3GPP TSG-RAN WG2 Meeting #123bis
R2-2309897
Xiamen, China, October 9th – 13th, 2023
Source:
Fujitsu
Title:
Remaining issues on C-DRX enhancement for XR
Agenda Item:
7.5.3
Document for:
Discussion and decision
1 Introduction
In the RAN2#123 meeting, some issues on XR-specific power saving have been discussed. The following agreements have been made on the reference SFN [1]:

· 8.
Network sets DRX reference SFN (drx-ReferenceSFN) to either 0 or 512, in the same way as in Rel-16 IIoT.

· 9.
Use the following option (option A): both the counter NSFN and the DRX reference SFN drx-ReferenceSFN are added to the DRX formula. NSFN is initialized to 0.

· The maximum value of the counter (NSFN) is 2^16 – 1 = 65535.
In this contribution, we would like to discuss the remaining issues on C-DRX enhancements for the XR-specific power saving.
2 Discussion
ASN.1 for the non-integer DRX cycle

RAN2 has agreed to use a rational number for representing the non-integer DRX cycle. The remaining issue is that how to design the ASN.1 for the non-integer Long DRX cycle, start offset, and/or possible non-integer Short DRX cycle in RRC configuration.
There are two directions on how to represent the rational DRX cycle with two integers, namely the numerator and the denominator. One direction is to reuse the structure of the current definition on drx-LongCycleStartOffset and extend the concept to the non-integer DRX cycle. In detail, a new field called drx-NonIntegerLongCycleStartOffset is introduced in the DRX-Config IE. Similar to the legacy drx-LongCycleStartOffset, each element in the CHOICE structure is a combination of the non-integer Long DRX cycle and the corresponding start offset. For the non-integer Long DRX cycle, a value of fractional number in ms is used, e.g., ‘ms200/3’ represents 200/3 ms, and so on. In this option, a fixed list of non-integer DRX cycle values corresponding to the supported frame rates are defined. In addition, a new field drx-NonIntegerShortCycle may be introduced, which can be an ENUMERATED type for all supported fractional numbers of the short DRX cycles. The following is an example of the ASN.1 for drx-NonIntegerLongCycleStartOffset of this option.
 drx-NonIntegerLongCycleStartOffset CHOICE {

 ms200/3 INTEGER(0..66),

 ms100/3 INTEGER(0..33),

 ms200/9 INTEGER(0..22),

 ms50/3 INTEGER(0..16),

 ms125/9 INTEGER(0..13),

 ms100/9 INTEGER(0..11),

 ms25/3 INTEGER(0..8),

 },

Another direction is to use different fields for drx-NonIntegerLongCycle and drx-StartOffset. For the definition of the drx-NonIntegerLongCycle. The drx-NonIntegerLongCycle can be defined with two integer numbers n1 and n2 representing the numerator and the denominator of the fractional number, respectively. The definition of the drx-NonIntegerShortCycle is the same. A new field drx-StartOffsetForNonIntegerCycle with integer values is introduced for defining the start offset when non-integer DRX cycle is used. The following is an example of the ASN.1 for drx-NonIntegerLongCycle of this option.
 drx-NonIntegerLongCycle SEQUENCE {

 n1 ENUMERATED(25, 50, 100, 125, 200, spare3, spare2, spare1),

 n2 ENUMERATED(3, 9, spare2, spare1),

 },

Both options can be feasible for defining the non-integer DRX cycles and each option has its pros and cons on the compatibility to legacy configurations and the extensibility to support more frame rates in future releases. RAN2 should make a decision on which option to choose.
Proposal 1: RAN2 to decide which option to use for the non-integer DRX cycle configuration:

Opt1: reuse legacy drx-LongCycleStartOffset / drx-ShortCycle structure for rational numbers
Opt2: separate drx-NonIntegerLongCycle and drx-StartOffset.
DRX formula

With the definition of DRX_SFN_COUTER, drx-TimeReferenceSFN in [2], the DRX formula, using non-integer Long DRX cycle as example, should be as follows:
floor ([(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = floor ([(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerLongCycle))
The modulo operation on a non-integer number will lead to rounding errors, which will cause unexpected behaviour for the DRX operation at UE side. In the above discussion the non-integer number is represented by a fraction number n1/n2. If the modulo operation is replaced by a simple calculation A – floor(A*n2/n1)*n1/n2 and the calculation is performed from the left to the right inside the formula, the rounding error will not occur. It is suggested to add a Note for the DRX formula as follows:
Note: UE implementation should use A modulo (n1/n2) = A – floor(A*n2/n1)*n1/n2 with the correct order in operations in the formula to avoid rounding errors.
Proposal 2: Use the following DRX formula for non-integer Long DRX cycle:

floor ([(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = floor ([(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerLongCycle))
UE implementation should use A modulo (n1/n2) = A – floor(A*n2/n1)*n1/n2 with the correct order in operations in the DRX formula to avoid rounding errors.
The maximum value of the start offset for the non-integer DRX cycle

In the above example of ASN.1 design for the non-integer DRX cycle, the start offset is defined as an integer 0..floor(drx-NonIntegerLongCycle), which follows the legacy design for integer DRX cycles. Since there is a floor() operation in the non-integer DRX cycle formula, the actual DRX cycle will be an integer and it is non-uniform. Fig.1 illustrates an example for a 50/3 ms (corresponding to 60fps) Long DRX cycle with drx-StartOffset = 16ms. With the above DRX formula, the actual Long DRX cycle will be 17ms, 16ms, and 17ms in one round. It is shown that there will be no ON Duration once in three Long DRX cycles with this configuration. This issue needs to be addressed to avoid the transmission delay due to missing the PDCCH in one whole DRX cycle.
There will be different solutions to address issue. For instance, the maximum value for the drx-StartOffset is restricted to floor(drx-NonIntegerLongCycle)-1. Another solution is that UE may autonomously start the OnDuration timer if the OnDuration timer has not started after one DRX cycle.
Proposal 3: RAN2 to discuss the issue caused by the maximum value of the drx-StartOffset for the non-integer DRX cycle.

[image: image1.emf]OnDuration

17ms

t=16ms t=33ms No ON Duration t=66ms

16ms 17ms

Fig 1. An example of DRX configuration which results in no ON Duration in a DRX cycle
Whether to support non-integer Short DRX cycle
There are some discussions on the possibility of supporting non-integer Short DRX cycle during the email discussion of the XR running CRs. In our opinion, the support of non-integer Short DRX cycle will give more flexibility on configurations for multi-flow or multi-modal XR services for instance. Therefore, it is better to support non-integer Short DRX cycles similar to the legacy support for the integer Short DRX cycle. However, in some DRX configurations the ON Duration of the non-integer Short DRX cycle and that of the non-integer Long DRX cycle are not aligned, also due to the floor() operation. Fig.2 shows an example of a configuration with Long DRX cycle = 50/3 ms, Short DRX cycle = 25/3 ms, and drx-StartOffset = 15ms. This misalignment is not a big issue but will bring confusion to the implementation and it does not follow legacy rule.
We also observe the fact that if the Long DRX cycle is an integer, there will be no such ON Duration alignment issue. To keep the flexibility of the support of Short DRX cycle with minimum standard impact, we propose that if the Short DRX cycle is a non-integer, the Long DRX cycle should be an integer.

Proposal 4: When the non-integer Short DRX cycle is configured, the Long DRX cycle should be an integer.

[image: image2.emf]Short DRX cycle = 25/3 ms

15ms

t

t 32ms 49ms

6ms 15ms 23ms 31ms 40ms 48ms

Long DRX cycle = 50/3 ms, StartOffset = 15ms

Fig 2. Misalignment between ON Durations of the Long DRX cycle and Short DRX cycle
3 Conclusion

In this contribution we discuss the remaining issues on the power saving for XR and media services. We make the following proposals:
Proposal 1: RAN2 to decide which option to use for the non-integer DRX cycle configuration:

Opt1: reuse legacy drx-LongCycleStartOffset / drx-ShortCycle structure for rational numbers
Opt2: separate drx-NonIntegerLongCycle and drx-StartOffset.
Proposal 2: Use the following DRX formula for non-integer Long DRX cycle:

floor ([(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = floor ([(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerLongCycle))
UE implementation should use A modulo (n1/n2) = A – floor(A*n2/n1)*n1/n2 with the correct order in operations in the DRX formula to avoid rounding errors.
Proposal 3: RAN2 to discuss the issue caused by the maximum value of the drx-StartOffset for the non-integer DRX cycle.
Proposal 4: When the non-integer Short DRX cycle is configured, the Long DRX cycle should be an integer.
4 References
[1]. RAN2 meeting report, 3GPP TSG RAN WG2 Meeting #123, 2023
[2]. R2-2309316, Introduction of XR enhancements to TS 38.321, 3GPP TSG-RAN WG2 Meeting #123bis, 2023

3GPP

_1757075482.vsd
￼

On Duration

17ms

16ms

t=16ms

t=33ms

No ON Duration

t=66ms

17ms

_1757075483.vsd
6ms

15ms

15ms

t

23ms

31ms

40ms

t

32ms

49ms

48ms

Long DRX cycle = 50/3 ms, StartOffset = 15ms

Short DRX cycle = 25/3 ms

