3GPP TSG-RAN WG2 Meeting #123bis R2-2309705
Xiamen, China, 9 – 13 October, 2023

Source:	CATT
[bookmark: Title]Title:	Leftover issues on DRX enhancements
[bookmark: Source]Agenda Item:	7.5.3
[bookmark: DocumentFor]Document for:	Discussion and Decision

[bookmark: _Ref528762725]Introduction
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]After RAN2#123 meeting, there are three leftover open issues on DRX enhancements. In this contribution, we address these leftover issues.
[bookmark: OLE_LINK24][bookmark: OLE_LINK25]Discussion
[bookmark: _Ref131489833]2.1	Short and long DRX cycles
It is FFS whether non-integer DRX cycles can be configured for both short and long DRX cycles or only one of them. Currently, the configured long DRX cycle must be a multiple of the short DRX cycle. According to TR 38.835 [1], when XR cycle is not an integer, there are 7 kinds of frame rate, 15, 30, 45, 60, 72, 90, 120 fps. With these new 7 cycles, there are several possible combinations that can be configured for long DRX cycle and short DRX cycle to meet the principle. And it is flexible to support short DRX expressed in rational number if long DRX is expressed in rational number.
Proposal 1: Non-integer DRX cycles can be configured for both short and long DRX cycles.
As mentioned above, when XR cycle is not an integer, there are 7 kinds of frame rate, 15, 30, 45, 60, 72, 90, 120 fps corresponding to non-integer cycles of 66.66, 33.33, 22.22, 16.66, 13.88, 11.11, and 8.33 ms respectively. Therefore, to support the rational numbers for configuring long DRX cycles, at least those 7 cases should be covered. And for non-integer short DRX cycle, at least 90 and 120 fps should be covered considering that the configured long DRX cycle must be a multiple of the short DRX cycle.
Proposal 2: The new characterization of the DRX cycle parameter in rational number should at least address the non-integer long DRX cycles corresponding to the burst rates of 15, 30, 45, 60, 72, 90, 120 fps.
Proposal 3: The new characterization of the DRX cycle parameter in rational number should at least address the non-integer short DRX cycles corresponding to the burst rates of 90 and 120 fps.
In the current RRC running CR [2], a new field needs to be introduced, named drx-LongCycleStartOffset-r18 to allow configuring long DRX periodicities. It is FFS how to express the new long DRX cycles.
Currently, drx-LongCycle is defined as follows:
 drx-LongCycleStartOffset CHOICE {
 ms10 INTEGER(0..9),
 ms20 INTEGER(0..19),
 ms32 INTEGER(0..31),
 ms40 INTEGER(0..39),
 ms60 INTEGER(0..59),
 ms64 INTEGER(0..63),
 ms70 INTEGER(0..69),
 ms80 INTEGER(0..79),
 ms128 INTEGER(0..127),
 ms160 INTEGER(0..159),
 ms256 INTEGER(0..255),
 ms320 INTEGER(0..319),
 ms512 INTEGER(0..511),
 ms640 INTEGER(0..639),
 ms1024 INTEGER(0..1023),
 ms1280 INTEGER(0..1279),
 ms2048 INTEGER(0..2047),
[bookmark: _GoBack] ms2560 INTEGER(0..2559),
 ms5120 INTEGER(0..5119),
 ms10240 INTEGER(0..10239)
 },
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]
To keep things simple, we suggest keeping the same structure for that field as in legacy: non-integer periodicity can be expressed as a fraction, and the unit is ms. For example, for a burst rate of 15 burst per second has a period of 200/3 ms, and the field drx-LongCycleStartOffset-r18 configures TwohundredThird-r18, with unit in ms. Similarly, DRX start offset is configured together. The corresponding offset value ranges up to the rounded-down value, in ms, of the DRX cycle. In other words it is coded as INTEGER(0..floor(drx-LongCycle)).
Therefore, the new drx-LongCycleStartOffset-r18 field could look as follows (only XR rates are captured below but the range of rates could be more generic):
 drx-LongCycleStartOffset-r18 CHOICE {
 msTwohundredThird-r18 INTEGER(0..66),
 msOnehundredThird-r18 INTEGER(0..33),
 msTwohundredNinth-r18 INTEGER(0..22),
 msFiftyThird-r18 INTEGER(0..16),
 msOnehundredtwentyfiveNinth-r18 INTEGER(0..13),
 msOnehundredNinth-r18 INTEGER(0..11),
 msTwentyfiveThird-r18 INTEGER(0..8),
 },

Proposal 4: For long DRX cycles with non-integer values, i.e. drx-LongCycleStartOffset-r18, the same structure of drx-LongCycle is applied.
drx-shortDRX is defined as follows:
shortDRX SEQUENCE {
 drx-ShortCycle ENUMERATED {
 ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms10, ms14, ms16, ms20, ms30, ms32,
 ms35, ms40, ms64, ms80, ms128, ms160, ms256, ms320, ms512, ms640, spare9,
 spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1 },
 drx-ShortCycleTimer INTEGER (1..16)
 } OPTIONAL, -- Need R
The new non-integer values for short DRX cycles can be extended in the drx-shortDRX directly. Take proposal 3 as an example, the extension could looks as follows:
shortDRX SEQUENCE {
 drx-ShortCycle ENUMERATED {
 ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms10, ms14, ms16, ms20, ms30, ms32,
 ms35, ms40, ms64, ms80, ms128, ms160, ms256, ms320, ms512, ms640, spare9 msOnehundredNinth-vxy,
 spare8 msTwentyfiveThird-vxy, spare7, spare6, spare5, spare4, spare3, spare2, spare1 },
 drx-ShortCycleTimer INTEGER (1..16)
 } OPTIONAL, -- Need R

Proposal 5: The new non-integer values for short DRX cycles are extended in the drx-shortDRX directly.
[bookmark: _Ref141797768]2.2	DRX parameters for DRX groups
It is FFS whether new DRX parameters such as drx-NonIntegerLongCycleStartOffset and drx-NonIntegerShortCycle [3] are shared by both DRX groups or can be configured separately for different DRX groups. When two DRX groups are configured, only drx-onDurationTimer and drx-InactivityTimer can be configured separately. To follow the principle of common parameters across DRX groups, it is preferred that these new DRX parameters are shared by both DRX groups.
Proposal 6: The new DRX parameter(s) for non-integer DRX cycles are shared by both DRX groups.
2.3	Formula
In current MAC running CR[3], the formula for determining the start time of the drx-onDurationTimer when the drx-NonIntegerShortCycle and/or drx-NonIntegerLongCycle are highlighted with yellow.
	[bookmark: _Hlk141257950]1>	if the Short DRX cycle is used for a DRX group and the drx-NonIntegerShortCycle is not configured for the DRX group, and [(SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle); or
1> if the Short DRX cycle is used for a DRX group and the drx-NonIntegerShortCycle is configured for the DRX group, and [(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerShortCycle) = [(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerShortCycle):
[bookmark: _Hlk141261902]2>	start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.
Editor’s note: Whether drx-NonIntegerShortCycle can be configured and the final formula for determining the start time of the drx-onDurationTimer when the drx-NonIntegerShortCycle is configured is pending further agreements.
1>	if the Long DRX cycle is used for a DRX group and the drx-NonIntegerLongCycle is not configured for the DRX group, and [(SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset; or
1> if the Long DRX cycle is used for a DRX group and the drx-NonIntegerLongCycle is configured for the DRX group, and [(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle) = [(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerLongCycle):
Editor’s note: The final formula for determining the start time of the drx-onDurationTimer when the drx-NonIntegerLongCycle is used is pending further agreements.

drx-NonIntegerShortCycle and drx-NonIntegerLongCycle are rational numbers. An integer modulo a rational number may result in a rational number. Hence, for the equation with non-integer DRX cycles to make sense, a floor operation needs to be added on both sides of the DRX formulas:
floor([(DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = floor([(drx-TimeReferenceSFN × 10) + drx-StartOffset)] modulo (drx-NonIntegerLongCycle))
In last RAN2 meeting, how to avoid the rounding errors with modulo operation are proposed [4][5][6]. Considering there may be different ways to implement modulo operation with rational numbers without rounding errors, it is preferred that a note instead of normative text is added and the exact way to avoid the rounding error is up to UE implementation.
Proposal 7: Floor operations are added on both sides of the current DRX formulas with non-integer cycles.
Proposal 8: A note is added that it is up to UE implementation how to avoid the rounding error with modulo operation.
Conclusion
According to the analysis in section 2, it is proposed:
Proposal 1: Non-integer DRX cycles can be configured for both short and long DRX cycles.
Proposal 2: The new characterization of the DRX cycle parameter in rational number should at least address the non-integer long DRX cycles corresponding to the burst rates of 15, 30, 45, 60, 72, 90, 120 fps.
Proposal 3: The new characterization of the DRX cycle parameter in rational number should at least address the non-integer short DRX cycles corresponding to the burst rates of 90 and 120 fps.
Proposal 4: For long DRX cycles with non-integer values, i.e. drx-LongCycleStartOffset-r18, the same structure of drx-LongCycle is applied.
Proposal 5: The new non-integer values for short DRX cycles are extended in the drx-shortDRX directly.
Proposal 6: The new DRX parameter(s) for non-integer DRX cycles are shared by both DRX groups.
Proposal 7: Floor operations are added on both sides of the current DRX formulas with non-integer cycles.
Proposal 8: A note is added that it is up to UE implementation how to avoid the rounding error with modulo operation.
Reference
[1]. [bookmark: _Ref130640320]TR 38.835 V2.0.0, Study on XR enhancements for NR, March 2023.
[2]. R2-2309315, TS38.331 CR Introduction of XR enhancements into TS 38.331 (running CR), Huawei, HiSilicon
[3]. R2-2309316, Introduction of XR enhancements to TS 38.321, Qualcomm
[4]. [bookmark: _Ref146545578]R2-2307077,	Power saving enhancements for XR,Qualcomm Incorporated, discussion
[5]. [bookmark: _Ref146545580]R2-2307788,	DRX enhancements for XR,	Nokia, Nokia Shanghai Bell,	discussion
[6]. [bookmark: _Ref146545582]R2-2308402, Remaining issues for C-DRX in XR, MediaTek Inc., discussion
R2-2309705
