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1 Introduction
Initial assumption that was made in the previous RAN2#119-bis-e meeting:
	Organizational:
· RAN2’s work can be somewhat split: A) use-case-centric configuration, signalling and control procedures, B) management of data and AI/ML models (where part of discussion may overlap between use cases).
· Assume that e.g. for the management of data and AI/ML models, RAN2 could start by focusing on data collection, model transfer, model update, model monitoring and model selection/(de)activation/switching/fallback (to the extent needed), whether UE capabilities has a role in this.
AIML methods:
· RAN2 will reuse terminology defined by RAN1 to the extent possible/reasonable
· For the existing AI/ML use cases discussed in RAN1, proprietary models may be supported and/or open format may be supported.
· From Management or Control point of view mainly some meta info about a model may need to be known, details FFS.
· A model is identified by a model ID. Its usage is FFS.
· General FFS: AIML Model delivery to the UE may have different options, Control-plane (multiple subvariants), User Plane, can be discussed case by case.



Initial assumption that was made in the previous RAN2#120 meeting:
	AIML methods:
· R2 assumes that model ID can be used to identify which AI/ML model is being used in LCM including model delivery. 
· R2 assumes that model ID can be used to identify a model (or models) during model selection/activation/deactivation/switching (can later align with R1 if needed). 
· It is allowed to discuss/determine that functionality can be done outside 3GPP system scope, i.e. OTT server. NO agreement for now on the specifics due to long discussion.
· Proposal (modified) Requirements for Data collection should include data collection for model updates / offline training, and non-real-time monitoring (for decision to retrain etc)
· For model transfer/delivery for AI/ML models (for the target use cases of this SI), RAN2 to study CP-based, UP-based solutions




In this contribution, we discuss which topics RAN2 could focus on RAN2 specific aspects for the study and share the understanding with RAN1.
2 Discussion
Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface says [1]:

	· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
· Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input
· Collaboration level specific specification impact per use case



AI/ML for air interface is a specific topic that includes ML-aspects that are not related to the traditional scope of RAN working groups. When discussion related to this SI starts also in RAN2, it is important to ensure that the same topics are not discussed in parallel in RAN1 and RAN2. We strongly discourage companies from bringing to RAN2 the discussion of topics that are already being discussed in RAN1, e.g., collaboration levels, model formats. Instead, RAN2 should focus on the enablement of agreements made in RAN1, and RAN2 specific topics. To facilitate the progress, RAN2 could make conditional assumptions only for those parts where RAN2 needs to make an analysis due to RAN2 impacts.
 
2.1 Lifecycle management aspects
2.1.1 UE ML-related support indication
Already in the current implementations, NW can have AI/ML functionalities that are transparent to UE and vice versa. However, when we start considering AI/ML functionalities for the air interfaces that impact specifications and are not transparent to other entities (i.e., UE, NW), it is important that both the NW and the UE realize that ML functionality exists in the other entity. Signalling is required to indicate that the UE is capable of ML-enabled features (AI/ML operations), which may include AIML functionality-specific capabilities and AIML implementation-related capabilities. 
For example, a UE supports two different ML-enabled features that have an impact on the air interface: a. beam prediction in the spatial domain with inference at UE side and b. CSI compression with a two-sided model. The UE may indicate support for these in capability reporting messaging. RAN2 could focus on the enablement of this, i.e., when/where to indicate the supported features, how to identify ML-enabled feature (whether we need a standardized list of ML-enabled Features in the spec), and what kind of information to be included in the indication. For example, should it include information about supported models within the feature, i.e., Functionality ID(s) and ML Model IDs and associated information.    
Proposal 1: RAN2 can start focusing on the signalling requirements to enable the UE indication of ML-enabled Feature and associated Functionalities including at least Functionality ID(s) and Model ID(s) and associated meta information. 
2.1.2 Model transfer/delivery
RAN1 has the following agreement on UE-gNB collaboration:

	Agreement[RAN1#109-e] 
Take the following network-UE collaboration levels as one aspect for defining collaboration levels 
1. Level x: No collaboration 
2. Level y: Signaling-based collaboration without model transfer 
3. Level z: Signaling-based collaboration with model transfer 
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings 
FFS: Clarification is needed for Level x-y boundary  




Following the RAN1 discussion, the model delivery with specification impact should happen in collaboration level z. The model delivery mechanism depends heavily on whether the model is treated as a proprietary model or a standardized model format is specified (open-format). The proprietary model is a more straightforward option. Therefore, RAN2 could start the study of model delivery/transfer, with 3GPP signalling-based delivery of proprietary models. If RAN1 indicates that open-format/3GPP-specified models are needed, RAN2 can extend the study for open-format models.
Proposal 2: RAN2 can study model transfer/delivery in agnostic format to be aligned with RAN1 use cases.

During the email discussion, the following solution options for model delivery/transfer have been highlighted:
	Proposal 5: Agree on the principle of solutions:
-	Solution 1a: gNB can transfer/deliver AI/ML model(s) to UE via RRC signalling.
-	Solution 2a: CN (except LMF) can transfer/deliver AI/ML model(s) to UE via NAS signalling.
-	Solution 3a: LMF can transfer/deliver AI/ML model(s) to UE via LPP signalling.
-	Solution 1b: gNB can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 2b: CN (except LMF) can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 3b: LMF can transfer/deliver AI/ML model(s) to UE via UP data.
-	Solution 4: Server can transfer/delivery AI/ML model(s) to UE (transparent to 3GPP).


 
We summarize the potential pros and cons of each of the above mentioned solutions in Table 2.1.2-1. According to the discussion, both CP and UP based solutions have advantages and disadvantages. In general, we can analyse these details with the requirements and combine the pros of each solution.

Table 2.1.2-1 Pros and cons of different model delivery/transfer options
	
	Pros
	Cons

	Solution 1a
	-	Limited specification impact for supporting transfer/delivery of a model with a few KB in size.
-	Additional security and verification may not be necessary as the UE already established security before the transfer is initiated.
-	Attached metadata to the transfer/delivery process is synchronized with the transfer/delivery process.
-	Less latency compared to other solutions (CP-Option2 and UP).

	-	Cannot support large models (>45KB) without increasing the maximum allowed RRC segment limit past 16.
-	Model transfer/delivery failure and recovery is not clear (e.g., during handover).
-	RRC message segmentation could cause handover failures and, if the model transfer/delivery is not aborted, could cause connection reestablishment failure.

	Solution 1b
	-	Existing 5G architecture can be optimized to achieve collocated UPF and AF (hosting AI/ML models) at the gNB.
-	Reduces control plane overhead,
-	Reduces overhead at gNB for model delivery/transfer 
-	Can handle model delivery/transfer during mobility efficiently 
-	Suitable for any size of model transfer 
-	Suitable for transferring multiple models simultaneously 
-	No need to standardize the ML model format in spec
	-	Requires new IEs in the RRC to configure UE to start download of a model.
-	SA2 input may be needed.

	Solution 2a
	· Model transfer/delivery is transparent to gNB.

	-   Support for large model is limited since NAS signalling will be encapsulated in SRB2.
Therefore, similar cons of RRC signalling apply here.
· Additional signalling could be required for interoperability between the UE and gNB.
Additional comment: SA2 evaluation may be needed for further analysis.

	Solution 2b
	-	Highly desirable for large size ML models.
-	This is possible because CN can perform PDU session establishment which enables to transfer large size model using DRBs. 

	-	CP signalling is needed to configure and initiate the model transfer from the CN.
-	Option 2 relates to models for the gNB-centric use cases of beam management and CSI compression, which are out of scope for CN.
-	Coordination would be required between the gNB and CN function (to be determined) such that a gNB-specific model or a model specific to a group of gNBs would be properly selected. The gNB would also need to be notified of the model transfer/delivery so that the gNB could activate, deactivate, and switch between models. How this coordination would work has not been discussed.

	Solution 3a
	-	The existing LPP protocol can be extended to support model transfer/delivery as long as the model size fits within the limitations of the LPP message size and number of segments possible.
-	The CP method would ensure a synchronization between the LMF and UE state with regard to available models.
	· Limitation on model size. Until it is known
what to expect for model size, it will be difficult to determine whether CP LPP can support model transfer/delivery.

	Solution 3b
	-	Highly desirable for large size ML models.
-	This is possible because CN can perform PDU session establishment which enables to transfer large size model using DRBs. 

	· CP signalling is needed to configure and
initiate the model transfer from the CN.
-	Option 2 relates to models for the gNB-centric use cases of beam management and CSI compression, which are out of scope for CN.
-	Coordination would be required between the gNB and CN function (to be determined) such that a gNB-specific model or a model specific to a group of gNBs would be properly selected. The gNB would also need to be notified of the model transfer/delivery so that the gNB could activate, deactivate, and switch between models. How this coordination would work has not been discussed.

	Solution 4
	-	Actual model delivery/transfer is transparent to 3GPP signalling.
-	There is no limitation to model size, or the number of models transferred

	Because the transfer/delivery is not controlled by the network, LCM-based functionality signalling will be required to facilitate interoperability between the UE and the network as well as model identification and verification. 
-	When network cannot control the model transfer/delivery, the transfer of large model may impact important and delay sensitive user data traffic.
-	How to synchronize network and server, so that network can take needed actions, requires further studies and is not fully under 3GPP control.




In the context of proprietary models, it is still unclear about the size of the ML model being transferred to the UE but it may be assumed that ML model sizes would be vary between 100’s of KBs to potentially several MBs. Accordingly, the solution to deliver an ML model could either be performed by using RRC messages with downlink (DL) segmentation or rely on user plane (UP) mechanisms that allow larger size ML models to be transferred. The disadvantage of using RRC messages is that the maximum number of RRC segments that may be transferred to the UE is limited by the current specification as well as the ability of the UE to process. For UP based solutions if a separate DRB is setup for this purpose using RLC AM, there should be no upper bound restriction to how large an ML model could potentially be. However, if RAN1 confirms that the largest ML model size for Rel-18 would not exceed more than, say, 100KB, then purely a CP based approach may be sufficient. If not, RAN2 needs to perform some additional work of enabling a UP based approach.

For proprietary models delivered by an OTT external to the 3GPP network, only a UP solution is feasible. In this case, the model should be delivered with metadata sufficient for registration with the RAN. Example metadata could include, but is not limited to, a model ID, functionality ID, and in the case of trainable and/or monitorable models, any agreed-upon details required for the network to support model training and monitoring. These details are FFS and being studied in RAN1.

Observation 1: Regarding the model characteristics/meta data information, RAN1 input is needed.


2.1.3 Functionality/Model selection, (de)activation, switching, and fallback
In RAN1#110bis-e, it was agreed on the following:

	Agreement
Study LCM procedure on the basis that an AI/ML model has a model ID with associated information and/or model functionality at least for some AI/ML operations when network needs to be aware of UE AI/ML models
· FFS: Detailed discussion of model ID with associated information and/or model functionality.
· FFS: usage of model ID with associated information and/or model functionality based LCM procedure
· FFS: whether support of model ID
· FFS: the detailed applicable AI/ML operations



Even though the details of the model identification and functionality identification are not fully clear at this stage, RAN2 at least could take the conditional assumption that there is a model ID that could be used for managing ML models. In addition to model IDs, RAN1 made several agreements about model monitoring. Particularly, model monitoring is considered to be used as follows: 

	Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)



The details of model monitoring are to be further studied in RAN1 and need to be developed per use case. To progress the study on model management, RAN2 could make a conditional assumption that there is a model monitoring procedure that can be used as a trigger for (de)activation and switching. At the same time, the procedures for (de)activation and switching should be agnostic of the monitoring process details. Nevertheless, it is still to be decided the number of models per use case would be resided both in NW and UE(s). It is a challenge for both NW and UEs to activate/deactivate models per use case. The management of the models become complicated and there will be too many back and forth activation/deactivation/switching signalling between NW and UEs, resulting in overloading the air interface and resources. Therefore, RAN1 is seeing Functionality based management to be easier to consider.  

Relying on these two conditional assumptions and considering the above mentioned challenges, RAN2 could start studying the different signalling options for ML enabled functionality related (de)activation and switching.

Proposal 3: RAN2 to first study signalling for functionality activation, deactivation and switching and continue with later with signalling for model activation, deactivation, and switching.

[bookmark: _Hlk117759410]2.1.4 Procedures for handling ML-enabled features during UE handover 
	Agreement (RAN1#110bis-e)
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.




When UE moves, it will make handovers between cells and different frequency layers. As part of handovers, and especially if UE is making a handover to another frequency layer, the radio environment may change significant, which may have significant impact on how the model functionality in the UE should work. It is important to ensure that model functionalities work well during and after UE’s handovers and UE is continuously performing at least as well as without non-ML solutions. Therefore, we see that it is important to study how to ensure that ML-enabled UE functionalities work well during handover. In our view, it is also important for RAN2 to study mechanisms to support ML model functionality change during UE’s mobility and especially during handovers when radio environment and network parameters may change significantly.

When UE is in the handover process, ML-enabled feature could be temporarily replaced by a legacy non-ML algorithm (e.g., if the target cell does not support ML), or the ML model may be switched (e.g., to use the model that is suitable for the target cell).

Another option is to prepare the required ML context in the UE beforehand, when a handover between ML context boundaries is probable, so that after the handover the UE can quickly switch to the correct new ML context. This may include, for example, switching between two ML models.

Observation 2: Procedures for ML-enabled features during UE handover rely on model (de)activation and switching and related preparations. 

Furthermore, during the RAN1 meeting different approaches were discussed for achieving good performance for the ML-enabled function. The first one, model generalization, suggests using a common model to cover a wide variety of scenarios and train a model with this assumption suitably but the main issue is that in many cases a generalized ML model may not be found or even impossible to achieve as the number of cell-specific configurations of parameters (antenna panel configuration, reference signal types and their transmission configurations, etc.,) are too large, and training for such a model seems rather impossible. The second approach allows to select a different ML model tuned for a given purpose and switch to it. Third approach allows to update the parameters for the model. It seems that depending on a given use-case any of the three approaches may be applied and we need to discuss these further.
During a HO/mobility procedure each of the above approaches come into play as the ML model functionality may be mismatched between the source and target cell. In the case of a UE-side (AI/ML) model or Two-sided (AI/ML) model this needs an assessment of the following aspects:

· detection of mismatch in ML functionality between the source and target cell(s) - for example, there are functionality differences between the source and target cell ML models that need to be resolved
· harmonizing (e.g., switching) the difference in ML functionality between the source and target cell ML models

In sum, to ensure seamless ML model operation during handover there are impacts to signalling procedures that have to be discussed between gNB and UE.

Observation 3: Continuation of ML functionality during a HO scenario requires an assessment of gap/mismatch of the ML functionality between the source and target cells.

Proposal 4: RAN2 to study how ML-enabled features are handled during the handover.


2.1.5 Delta configuration
It seems that many companies are discussing delta configuration during model delivery/transfer. In one delta configuration implementation in RRC, ASN.1 delta configuration acts as a space saving mechanism, which sends only differences from the original configuration. On the contrary, delta configuration for a model could be completely carry a different meaning. According to our knowledge, even for a simple difference in model parameters, new delta configuration signalling needs to be defined. Delta in the model delivery/transfer context could also pertain to the structure of the AIML model, which for a proprietary model could be completely transparent to the network. Therefore, without proper definition of delta configuration, we may not be able to study this concept.

Proposal 5: RAN2 to clarify the definition of delta configuration in terms of model delivery/transfer.

2.2 Signalling impacts
2.2.1 Signalling for model monitoring 

RAN1 made the following agreement about model monitoring: 

	Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network 
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms

Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)
Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
1. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
1. Monitoring based on system performance, including metrics related to system peformance KPIs
1. Other monitoring solutions, at least following 2 options.
8. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
8. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE
Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures
Agreement
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation/latency for training data collection.
· Storage/computation/latency for training and model update
· Storage/computation/latency for model monitoring.
· Storage/computation/latency for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)




RAN2 details of model monitoring are focused on how to monitor. However, what to monitor is not clear. The details of monitoring are under study in RAN1. Those are different for different use cases. 

A UE using ML-enabled feature may face issues when using ML Functionalities for augmenting different operations required for operating in a given radio communication network configuration (e.g., beam management, measurements, mobility procedures). Some of these issues may arise from the Functionality consuming more than expected processing resources, new performance issue due to ML Model update (see above) or any other reason that happens during runtime of the ML-enabled Feature. The network should have a mechanism to detect these issues and recommend actions to mitigate the issue and this requires some signalling mechanism between the network and the UE.
Observation 4: Network should be able to directly monitor the performance of a given active Functionality and recommend actions to the UE to mitigate them.

Proposal 6: RAN2 to study mechanisms for the network to monitor the performance of a given Functionality and recommend actions to the UE to mitigate potential issues arising due to Functionality execution.

2.2.2 Signalling for data collection 
While the data types and data volume required for model training, monitoring, and inference are use case specific, legacy measurement reporting frameworks could be extended for AIML data collection. Minimization of drive tests (MDT) [2],[3] could be used as an example to augment use case specific frameworks such as RRC measurement reporting, CSI reporting, and LPP location information and assistance data because of the way that it facilitates the storage of data collected over a period of time, whereas the other mentioned frameworks are generally used for instantaneous decisions and the data is discarded after its use.

MDT supports two modes: immediate and logged [2]. In the immediate mode, the gNodeB is configured to request RRC measurement reports including location information from the UE, store them for the duration of the logging interval, and then forward the results to a trace collection entity (TCE). In logged MDT, the IDLE/INACTIVE mode UE stores logging data locally, and transmits the dataset to the gNodeB upon entering CONNECTED mode. The dataset is forwarded to the TCE the same way. The caveat is that the TCE is deployed at the OAM, which instructs the AMF to configure the gNodeB for MDT. To support data collection at the UE, gNodeB, the LMF, or other 5GC NFs, architectural changes outside of RAN2’s responsibility would be required. We find it appropriate to study the existing frameworks, and consider the architectural aspects of MDT, but not to use MDT as the data collection solution.

Legacy use-case specific frameworks such as CSI reporting and LPP could be used as collection techniques in a way that resembles immediate MDT and/or be used as model to structure data for logging data volumes larger than would be supported by immediate MDT. The component that is missing for the support of AIML data collection is that which can configure measurements on a network entity (UE, gNodeB, etc.), collect the data, and forward the data to the target of the inference, or to the monitoring or training entity.

Until it is confirmed by RAN1 what data types, and how much data is required for each type of data collection and use case, we can study potential solutions that could be adapted to the eventual agreement.

Observation 5: MDT does not satisfy the requirements for data collection as-is but could be used as an example for how to adapt existing frameworks to data collection for AIML.

Observation 6: Companies will further investigate the data collection frameworks listed in the post RAN#120 data collection email discussion and their configuration and signalling mappings to inference, training, and monitoring.

2.2.3 Indication of ML model update 
Different from (de)activation and switching, signalling for ML model update is not agnostic of the underlying ML monitoring process and function details. Particularly, it is not clear what kind of information needs to be provided in the model update indication/signal/command. Those may include additional instructions on how to update the model. The details of model updating need to be first developed in RAN1 per each use case.
Proposal 7: RAN2 to study the signalling mechanism for UE to indicate changes in the Functionality of a ML-enabled Feature by providing a suitable reporting framework (e.g., a semi-static mechanism available in the form of UE assistance information).

3	Conclusion
In this contribution we have made an initial assessment of the AIML methods that are expected to be applicable to the study from a RAN2 perspective and their expected or potential architecture. We have also listed potential examples for the allocation of functionality to entities along with other framework aspects.
Based on the discussion, the following observations are made:
Observation 1: Regarding the model characteristics/meta data information, RAN1 input is needed.
Observation 2: Procedures for ML-enabled features during UE handover rely on model (de)activation and switching and related preparations. 
Observation 3: Continuation of ML functionality during a HO scenario requires an assessment of gap/mismatch of the ML functionality between the source and target cells.
Observation 4: Network should be able to directly monitor the performance of a given active Functionality and recommend actions to the UE to mitigate them.
Observation 5: MDT does not satisfy the requirements for data collection as-is but could be used as an example for how to adapt existing frameworks to data collection for AIML.
Observation 6: Companies will further investigate the data collection frameworks listed in the post RAN#120 data collection email discussion and their configuration and signalling mappings to inference, training, and monitoring.
Based on the discussion, the following proposals are made:
Proposal 1: RAN2 can start focusing on the signalling requirements to enable the UE indication of ML-enabled Feature and associated Functionalities including at least Functionality ID(s) and Model ID(s) and associated meta information.
Proposal 2: RAN2 can study model transfer/delivery in agnostic format to be aligned with RAN1 use cases.
Proposal 3: RAN2 to first study signalling for functionality activation, deactivation and switching and continue with later with signalling for model activation, deactivation, and switching.
Proposal 4: RAN2 to study how ML-enabled features are handled during the handover.
Proposal 5: RAN2 to clarify the definition of delta configuration in terms of model delivery/transfer.
Proposal 6: RAN2 to study mechanisms for the network to monitor the performance of a given Functionality and recommend actions to the UE to mitigate potential issues arising due to Functionality execution.
Proposal 7: RAN2 to study the signalling mechanism for UE to indicate changes in the Functionality of a ML-enabled Feature by providing a suitable reporting framework (e.g., a semi-static mechanism available in the form of UE assistance information).
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5	Working list of terminologies (defined by RAN1)
Table 5-1: Working list of terminologies
	Terminology
	Description

	Data collection
	A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

	AI/ML Model
	A data driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs. 

	AI/ML model training
	A process to train an AI/ML Model [by learning the input/output relationship] in a data driven manner and obtain the trained AI/ML Model for inference

	AI/ML model delivery
	A generic term referring to delivery of an AI/ML model from one entity to another entity in any manner.
Note: An entity could mean a network node/function (e.g., gNB, LMF, etc.), UE, proprietary server, etc.

	AI/ML model Inference
	A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs

	AI/ML model validation
	A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model parameters that generalize beyond the dataset used for model training.

	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing does not assume subsequent tuning of the model.

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.

	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the network to UE

	Model upload
	Model transfer from UE to the network

	Federated learning / federated training
	A machine learning technique that trains an AI/ML model across multiple decentralized edge nodes (e.g., UEs, gNBs) each performing local model training using local data samples. The technique requires multiple interactions of the model, but no exchange of local data samples.

	Online training
	An AI/ML training process where the model being used for inference) is (typically continuously) trained in (near) real-time with the arrival of new training samples. 
Note: the notion of (near) real-time vs. non-real-time is context-dependent and is relative to the inference time-scale.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as online training by commonly accepted conventions.
Note: Fine-tuning/re-training may be done via online or offline training. (This note could be removed when we define the term fine-tuning.)

	Offline training
	An AI/ML training process where the model is trained based on collected dataset, and where the trained model is later used or delivered for inference.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as offline training by commonly accepted conventions.

	Offline field data
	The data collected from field and used for offline training of the AI/ML model

	Online field data
	The data collected from field and used for online training of the AI/ML model

	Model monitoring
	A procedure that monitors the inference performance of the AI/ML model

	Supervised learning
	A process of training a model from input and its corresponding labels. 

	Unsupervised learning
	A process of training a model without labelled data.

	Semi-supervised learning 
	A process of training a model with a mix of labelled data and unlabelled data

	Reinforcement Learning (RL)
	A process of training an AI/ML model from input (a.k.a. state) and a feedback signal (a.k.a.  reward) resulting from the model’s output (a.k.a. action) in an environment the model is interacting with.

	Model activation
	enable an AI/ML model for a specific function

	Model deactivation
	disable an AI/ML model for a specific function

	Model switching
	Deactivating a currently active AI/ML model and activating a different AI/ML model for a specific function



