Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Ref452454252][bookmark: _Hlk54275161]Need to check	3GPP TSG-RAN WG2 #121	R2-2301508
Athens, Greece, 2023-02-17 - 2023-03-03

Agenda Item:	8.5.3
Source:	Ericsson
Title:	Discussion on XR-specific power saving
Document for:	Discussion, Decision
1	Introduction
In this paper we discuss DRX enhancements for the following power saving objective in Rel-18 XR WID [1]:
	Specify the enhancements related to power saving:
-	DRX support of XR frame rates corresponding to non-integer periodicities (through at least semi-static mechanisms e.g. RRC signalling) (RAN2).

[bookmark: _Ref178064866]2	Discussion on DRX Enhancements for XR
[bookmark: _Ref105678701]2.1 Align DRX to non-integer traffic periodicity
We propose a simple semi-static solution to match the DRX cycle with the traffic period based on adding a time offset after a given number of cycles. The network provides these two parameters to the UE via RRC signalling:
· traffic_time_offset: indicates a fixed time shift for the start of drx-onDurationTimer;
· drx_offset: a number of cycles after which the new shift traffic_time_offset should be added.
With this solution, the DRX cycle length would be approximated to the next lower supported cycle value w.r.t. the non-integer traffic periodicity. The MAC formula to start the drx-onDurationTimer for Long DRX would then be modified to:
[(SFN × 10) + subframe number] modulo (drx-LongCycle) =
 (drx-StartOffset + n × traffic_time_offset) modulo (drx-LongCycle).

Additionally, the following steps describe how to apply the formula above:
(i) initialize the following variables when DRX starts the first time: tmp_cycle=0 and drx_cycle=-1;
(ii) if the condition in the MAC formula is true:
· if (tmp_cycle+1) modulo drx_offset=0, then increment n and tmp_cycle;
· otherwise, start drx-onDurationTimer and increment drx_cycle and assign tmp_cycle=drx_cycle.
The steps above ensure the following aspects:
a) Counter n keeps track of how many times traffic_time_offset is accumulated in time over multiple cycles.
b) Counters tmp_cycle and drx_cycle ensure that, if the accumulated traffic_time_offset (represented by n×traffic_time_offset) becomes larger than drx-LongCyle, this is properly dealt with in the modified formula.
The required changes to the 3GPP MAC specifications for this solution are shown in Annex A. The MAC formula to start the drx-onDurationTimer for Short DRX can be modified in the same way as for Long DRX above and it would have its own set of parameters.
Below we show an example for video traffic with generation rate 60 fps and no jitter. We set drx_offset=3, traffic_time_offset=2 ms, drx-LongCycle=16 ms, and drx-onDurationTimer=10 ms. In other words, after the 3rd DRX cycle, a time offset of 2 ms is added.
In Table 1, the middle columns show how the difference between the data arrival and start of DRX cycle increases, as a result of the non-integer periodicities. The right-hand column shows the result after the proposed solution is applied.
[bookmark: _Ref110593769]Table 1
	Application packet arrival [ms]
	
	Problem with standard formula
	
	Solution with enhanced formula

	
	
	DRX cycle start [ms]
	Difference (packet arrival – DRX start) [ms]
	
	DRX cycle start [ms]
	Difference (packet arrival – DRX start) [ms]

	0
	
	0
	0
	
	0
	0

	16.66
	
	16
	0.66
	
	16
	0.66

	33.33
	
	32
	1.33
	
	32
	1.33

	50
	
	48
	2
	
	50
	0

	66.66
	
	64
	2.66
	
	66
	0.66

	83.33
	
	80
	3.33
	
	82
	1.33

	100
	
	96
	4
	
	100
	0

	116.66
	
	112
	4.66
	
	116
	0.66

	133.33
	
	128
	5.33
	
	132
	1.33

	150
	
	144
	6
	
	150
	0

	166.66
	
	160
	6.66
	
	166
	0.66

	183.33
	
	176
	7.33
	
	182
	1.33

	200
	
	192
	8
	
	200
	0

	216.66
	
	208
	8.66
	
	216
	0.66

	233.33
	
	224
	9.33
	
	232
	1.33

	250
	
	240
	10
	
	250
	0

	266.66
	
	256
	10.66
	
	266
	0.66

	283.33
	
	272
	11.33
	
	282
	1.33

	300
	
	288
	12
	
	300
	0

	316.66
	
	304
	12.66
	
	316
	0.66

In [2] we presented simulation results for the proposed alignment solution to match C-DRX to the non-integer video periodicity. Furthermore, we presented results also for semi-static solutions from other companies, that result in cycles of {17, 17, 16} ms. These other solutions can be based on introducing rational DRX cycles, cadences, DRX cycle patterns, or DRX offset patterns, since they can all result in {17, 17, 16} ms. The results showed that the proposed alignment solution achieves a nearly equal performance (% of satisfied UEs and power saving gain), as these other semi-static solutions.

[bookmark: _Toc127460567]The proposed DRX alignment solution achieves the same performance as other semi-static alignment solutions (e.g., rational DRX cycles, cadences, cycle patterns).

The proposed solution to enhance the formula for Long DRX cycles has several advantages:
· This solution has a small impact in terms of specification changes and is close to the existing DRX behaviour. Namely, the proposed solution can be easily configured to work as current DRX with integer cycle lengths, by simply setting traffic_time_offset=0.
· The two new parameters traffic_time_offset and drx_offset are configured at RRC and have values in integers of milliseconds, thus having a low signalling overhead.
· This solution is flexible and supports many DRX alignments with the combination of these two new parameters (traffic_time_offset and drx_offset with integer values), even if only few values are specified for these parameters. Thus, it can easily achieve DRX alignments with currently known and, additionally, future XR non-integer periodicities (which may not yet be known).
· Can be applied to work with Short DRX.
In contrast to the proposed alignment solution, other semi-static alignment solutions have the following disadvantages:
· Modifying the DRX formula by adding rational cycle values or cadences: These solutions deviate more from the legacy DRX behaviour. Specifically, configuring legacy integer DRX cycles would have to be treated differently than new rational cycle values or cadences. Thus, different procedures and additional signalling would be needed to indicate to the UE which formula/procedure to use to determine the start of the drx-onDurationTimer (legacy or new). Furthermore, in order to work, these solutions need the exact traffic periodicity/cadence values, which may currently be difficult to predict for future applications. Thus, the list of supported values would have to be updated in different future releases. This may cause issues regarding the UE capabilities according to different releases.
· Introducing DRX cycle patterns or DRX offset patterns: These solutions introduce more significant changes in the way that DRX works. Namely, their behaviour is equivalent to employing two levels of nested cycles. This may have a broader specification impact, potentially affecting features that are configured based on Long DRX cycle length and offsets. Examples of such features are Short DRX and wake-up signal based on DCI format 2-6.

[bookmark: _Toc127460569]Enhance Long and Short DRX formulas to match non-integer XR traffic periods as described in this section, by adding two new parameters: (i) a fixed time shift for the start of drx-onDurationTimer; and (ii) a number of DRX cycles after which the new shift should be added.

The DRX alignment solution proposed above works with legacy Long/Short DRX cycle lengths. However, to obtain very tight alignment of DRX cycles with the traffic periodicity, it is useful to introduce integer cycle lengths that are close to expected non-integer traffic periodicities. For instance, for the frame generation rates of {15, 30, 45, 60, 72, 90, 120} fps it is useful for the specs to support the DRX cycle values of {8, 9, 11, 13, 16, 22, 33, 66} ms. We note that some of these values are already supported for Short DRX. To obtain tight alignments also with future traffic periodicities that are not yet known, it would be useful to support the entire range of integer values from, e.g., 8 to 70 ms.

[bookmark: _Toc127460570]New integer values in ms for DRX cycle lengths (e.g. {8, 9, 11, …, 13…, 16, 22, …33, …, 66} ms) are introduced.

2.2 SFN wrap-around enhancement for C-DRX
The SFN wrap-around issue for CDRX has been discussed before and at RAN2 #105 [4] it was concluded to not to fix this issue. This conclusion was appropriate for the eMBB use case, since eMBB services typically have a short duration and the SFN wrap-around is rare. Additionally, eMBB services do not have strict PDB constrains, so small additional delays, in the few cases when SFN wraps around, would not make any real impact on the user experience.
However, we expect this SFN wrap-around to affect XR traffic more severely than eMBB traffic, due to the following reasons:
· The length of the XR service duration is expected to be in the order of (dozens of) minutes, so the SFN will wrap around multiple times during the XR service.
· XR service has a tight PDB and SFN wrap-around may take a few milliseconds each time it occurs, since the DRX cycle and traffic arrival pattern stop being matched. This results in additional latency. Moreover, this also results in a waste of UE power, since the UE is in DRX Active Time when traffic is not expected.
· Solving this problem via an RRC reconfiguration is one possibility. However, each time there is an RRC reconfiguration, the connection may be interrupted for up to several dozens of milliseconds, leading to loss of, or delayed data, which is not acceptable for XR services.

[bookmark: _Toc115269962][bookmark: _Toc127460568]SFN wrap-around may affect XR traffic by introducing additional delay and resulting in a waste of UE power.

The SFN wrap-around issue occurs when applying the MAC C-DRX formula to determine the start of the drx-onDurationTimer [3]: [(SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset.
Specifically, SFN takes values in the range 0–1023 and the subframe number can be from 0 to 9, so the term [(SFN × 10) + subframe number] ranges from 0 to 10239 and then repeats these values, i.e. every time SFN=0 again. Consequently, if the DRX cycle length is not a factor of 10240 ms, the formula calculates wrongly the start of the DRX cycle every time the SFN value wraps around and then propagates this offset to the next cycles. We note that this issue is not specific to XR traffic and occurs for any R15/16 DRX cycle length that is not a factor of 10240 ms. However, solving this issue is another component needed to ensure DRX alignment with non-integer traffic periodicities.
To solve this issue, we propose the following simple modification of the DRX formula, by introducing counter m:
[((1024×m + SFN) × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset,
where m=0 when DRX is activated and is incremented every time SFN=0.
This SFN wraparound solution requires only minimal specification changes (see Annex B) and can be easily integrated into the proposed DRX alignment solution in Section 2.1.

[bookmark: _Toc115269956][bookmark: _Toc127460571]Solve the SFN wrap-around problem in the DRX formula, by introducing a counter which increments every time that SFN wraps around.

Conclusion
In the previous sections we made the following observations:
Observation 1	The proposed DRX alignment solution achieves the same performance as other semi-static alignment solutions (e.g., rational DRX cycles, cadences, cycle patterns).
Observation 2	SFN wrap-around may affect XR traffic by introducing additional delay and resulting in a waste of UE power.

Based on the discussion in the previous sections we propose the following:
Proposal 1	Enhance Long and Short DRX formulas to match non-integer XR traffic periods as described in this section, by adding two new parameters: (i) a fixed time shift for the start of drx-onDurationTimer; and (ii) a number of DRX cycles after which the new shift should be added.
Proposal 2	New integer values in ms for DRX cycle lengths (e.g. {8, 9, 11, …, 13…, 16, 22, …33, …, 66} ms) are introduced.
Proposal 3	Solve the SFN wrap-around problem in the DRX formula, by introducing a counter which increments every time that SFN wraps around.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref125727620][bookmark: _Ref115090021]3GPP RP-223502, “New WID on XR Enhancements for NR”, Dec. 2022.
[bookmark: _Ref127263696]3GPP TR 38.835, “Study on XR enhancements for NR”, V1.0.0, Dec. 2022.
[bookmark: _Ref108523694]3GPP TS 38.321, “Medium Access Control (MAC) protocol specification”, V17.0.0, Mar. 2022.
[bookmark: _Ref110253262]R2-1903001, “Report of 3GPP TSG RAN WG2 meeting #105 Athens, Greece, 25 February - 1 March, 2019”.
Annex A: Proposed modifications to integrate DRX alignment solution in 3GPP specifications
We show how to modify the 3GPP MAC specifications in [3] to capture the proposed DRX alignment solution in Section 2.1, as follows. The proposed modifications are marked in red.

1> if the Long DRX cycle is used for a DRX group, and [SFN × 10 + subframe number] modulo (drx-LongCycle) = (drx-StartOffset + n × traffic_time_offset) modulo (drx-LongCycle) (See Annex … for details on how to use the formula.)

[bookmark: _Ref110257114]Annex B: Proposed modifications to solve SFN wrap-around problem in 3GPP specifications

We show how to modify the 3GPP MAC specifications in [3] to capture the SFN wrap-around solution in Section 2.2, as follows. The proposed modifications are marked in red, and m is initialized to zero.
1> if SFN=0
 2> m = m+1
1> if the Long DRX cycle is used for a DRX group, and [(1024×m + SFN) × 10 + subframe number] modulo (drx-LongCycle) = drx-StartOffset

Below we show how to integrate the proposed SFN wrap-around solution into the proposed DRX alignment solution in Annex A. The proposed modifications are marked in red.
1> if SFN=0
 2> m = m+1
1> if the Long DRX cycle is used for a DRX group, and [(1024×m + SFN) × 10 + subframe number] modulo (drx-LongCycle) = (drx-StartOffset + n × traffic_time_offset) modulo (drx-LongCycle) (See Annex … for details on how to use the formula.)

	4/4	
