
3GPP TSG-RAN WG2 Meeting #121		R2-2300324
Athens, Greece, 27th Feb. – 3rd Mar. 2023
Source:	vivo
Title:	Discussion on DRX Enhancements for XR Power Saving
Agenda Item:	8.5.3
Document for:	Discussion and Decision
1. Introduction
The WI on XR Enhancements for NR related to power saving[1] was agreed in RAN#98-e. One objective is to specify the enhancements for DRX to support non-integer periodicities of XR frame rates as follows:
	Specify the enhancements related to power saving:
-	DRX support of XR frame rates corresponding to non-integer periodicities (through at least semi-static mechanisms e.g. RRC signalling) (RAN2).

In this contribution, we discuss the DRX enhancement solutions to address the DRX cycle misalignment issue.
2. Discussion
2.1. Align DRX Configuration with Non-integer Periodicity of XR Service
The mismatch between non-integer periodicity of XR traffic and the legacy integer-valued DRX cycles issue is explained briefly below.
Currently, the values for DRX cycle are integers. For example:
1. Values for long DRX cycle: 10, 20, 32, 40ms, etc.
1. Values for short DRX cycle values: 2, 3, 5, 6, 7, 8, 10, 14, 16, 20, 30, 32, 35ms, etc.
However, it was observed that the FPS(Frames Per Second) of most XR traffic for a single UE can be 15, 30, 45, 60, 72, 90, and 120, i.e. the corresponding periodicities would be 66.66ms, 33.33ms, 22.22, 16.66, 13.88, 11.11 and 8.33ms respectively[2]. The current DRX cycle values don’t match with the non-integer XR traffic periodicity.
To address the DRX cycle misalignment issue, several solutions are discussed in the SI stage. There are mainly three types of solutions.
· Solution 1: Adjust the DRX pattern according to RRC pre-configuration
· Approach 1: Configure multiple DRX configurations with different DRX cycle lengths which are applied in turn according to pre-configured pattern[3][4][5]
· Approach 2: Configure multiple DRX configurations with different drx-startoffsets which are applied simultaneously[6]
· Approach 3: Configure multiple on-durations within one DRX cycle, and different on-durations are decided by different drx-startoffset[3][6]
· Approach 4: Configure one DRX configuration with additional prameters i.e. traffic_time_offset and drx_offset, and UE applies a certain shift (traffic_time_offset) to DRX start offset every drx_offset cycles[7]

Below we show the four approaches of solution 1 with an example for video traffic with 60 FPS(i.e. 3 frames arrive every 50ms).

Figure 1 DRX configuration approaches to solve the mismatch issue
[bookmark: OLE_LINK20]From the figure above, we can see that all approaches of solution 1 can address the mismatch issue. We analyze the specification impacts of various approaches on the existing DRX mechanism and DRX formula as below:
· Approach 1
As depicted in Figure 1, three DRX configurations are configured for UE as a DRX cycle pattern. The three DRX configurations have the same DRX parameters except for the DRX cycle value (i.e. 16/17/17ms in this example). And the three DRX configurations are applied in turn according to pre-configured order and repeated every 50ms.
In a generalized case of approach1, one DRX cycle pattern consisting of N DRX configurations(drx-cycle1, drx-cycle2, …, drx-cycleN) is configured for UE, and all the DRX configurations have the same DRX parameters except for the DRX cycle lengths. Then the start time of drx-onDurationTimer for each DRX cycle can be depicted below:
(i) The drx-onDurationTimer for drx-cycle1 started in the subframe where:
[(SFN × 10) + subframe number] modulo (drx-PatternCycle) = drx-StartOffset (Eq1)
where drx-PatternCyle is the sum of the total N DRX cycle lengths.
(ii) The drx-onDurationTimer for drx-cycleX started in the subframe where:
 drx_cycle1_on + drx-Cycle1+drx-Cycle2+…+drx-CycleX-1 (Eq2)
where drx_cycle1_on is the subframe in which the drx-onDurationTimer of drx-cycle1starts.
Furthermore, approach 1 may not be easy to accommodate the new frame rates of XR traffic very well. For instance, when considering an XR service with a new FPS, such as 99, is introduced in the future. Then a DRX pattern composed of 99 DRX configurations(e.g. 89 cycles of 10ms and 10 cycles of 11ms) should be configured to UE, making the RRC configuration very complicated.
Finally, in the current specification, only one DRX configuration is supported in one DRX group, meaning that the DRX pattern configuration mechanism of approach 1 would have a significant impact to the existing DRX mechanism.

· Approach 2
As depicted in Figure 1, multiple DRX configurations with varying drx-StartOffset are configured for UE(i.e, 3 DRX configurations with drx-StartOffset set to 0/16/33ms in this example). The legacy long/short DRX formulas can be used to calculate the start time of drx-onDurationTimer for each DRX configuration.
Just like approach 1, approach 2 also requires multiple DRX configurations, which brings extra complexity to the existing DRX mechanism. To support FPS = 99, 99 different drx-StartOffset values would be required for approach 2, which makes the RRC configuration very complicated.

· Approach 3
Approach 3 can be achieved by configuring one DRX cycle with multiple DRX on-durations. As illustrated in figure 1, three DRX on-durations are configured within the same DRX cycle to match the arrival time of three frames.
In this approach, the current parameter drx-startoffset needs to be extended to a list of drx-startoffsets. And any one of the drx-startoffset in the list that satisfies the legacy DRX formula will trigger a drx-onDurationTimer.
However, in the current DRX model, there is only one DRX on-duration in one DRX cycle, and drx-onDurationTmer is defined as follows[11]:
	-	drx-onDurationTimer: the duration at the beginning of a DRX cycle;

So the DRX mechanism also needs to be adjusted if approach 3 is applied. To support FPS = 99, 99 drx-startoffset needs to be configured to UE, which makes the RRC configuration very complicated.

· Approach 4
The final approach matches the DRX cycle with the XR traffic period by adding a time offset after several DRX cycles(e.g, add 2ms after 3 DRX cycles in this example), but some new parameters(e.g. traffic_time_offset, drx_offset) and variables(e.g. tmp_cycle,drx_cycle) are introduced, and the DRX formula is complicated according to contribution[8]:
· traffic_time_offset: indicates a fixed time shift for the start of drx-onDurationTimer;
· drx_offset: a number of cycles after which the new shift traffic_time_offset should be added.
With this solution, the DRX cycle length would be approximated to the next lower supported cycle value w.r.t. the non-integer traffic periodicity. The formula and conditions to start the drx-onDurationTimer would then be modified to:
(i) initialize the following variables when DRX starts the first time: tmp_cycle=0 and drx_cycle=-1;
(ii) check the condition:
[(SFN × 10) + subframe number] modulo (drx-LongCycle) =
 (drx-StartOffset + n × traffic_time_offset) modulo (drx-LongCycle);
(iii) if the condition in (ii) is true and (tmp_cycle+1) modulo drx_offset=0, increment n and tmp_cycle;
(iv) otherwise, if the condition in (ii) is true, start drx-onDurationTimer and increment drx_cycle and assign tmp_cycle=drx_cycle.

Besides, approach 4 cannot support some specific FPSs. When FPS = 99 is introduced, if we apply drx_offset = 10, traffic_time_offset = 1ms, and DRX cycle = 10ms, then a time offset of 1ms will be added after every 10 DRX cycles. This results in a total duration of 999.9 ms per 99 DRX cycles with approach 4, leading to a 0.1 ms deviation from XR traffic per 99 frames. The small time deviation will accumulate with time and become a larger deviation finally.

From the analysis above, we have the following observation:
Observation 1: To handle the mismatch between XR traffic and DRX cycle, adjust the DRX pattern according to RRC pre-configuration leads to relatively large specification impact, e.g. introduce new DRX model or new DRX formula.

· Solution 2: Dynamic indication to adjust DRX configuration[9][10]
This solution allows the gNB to provide UE with one original DRX configuration with RRC signaling. Then the network can adjust the DRX parameters, e.g. the drx-StartOffset via L1/L2 signaling, to align with XR packet arrival.
As no extra DRXparameter is introduced, we assume this solution has small/no impact to current DRX configuration procedure and DRX formula.
However, the method of dynamic adaptation of a pre-configured DRX configuration brings no extra power saving gain compared with solution 1. While more signalling overhead is introduced by the frequent L1/L2 signalling.
One may argue another motivation for dynamic adaptation solution is to address the issues of DRX cycle mismatch and jitter with a common solution. However, we think this argument may not align with the following RAN1 assumption:
	Conclusion of RAN1 110:
RAN1 does not assume instantaneous jitter value for a frame is predictable for Rel-18 XR SI power saving study before further input is provided by SA.

With the assumption of RAN1, we think it is hard for gNB to dynamically select and indicate UE a proper on duration start time to handle the instantaneous jitter.
Taking the above into account, we think the motivation and target scenarios for dynamic adaptation of a pre-configured DRX configuration are not clear.
Observation 2: To handle the mismatch between XR traffic and DRX cycle, dynamic adaptation of a pre-configured DRX configuration solution leads to small/no impact to current DRX configuration procedure and DRX formula, at the cost of more L1/L2 signalling overhead.

· Solution 3: Introduce non-integer values for DRX cycle
[bookmark: OLE_LINK9]To align DRX cycle with non-integer traffic periodicity, a straightforward way is to extend the standard values of DRX cycle to include non-integer values. For example, rational numbers such as 1000/FPS ms can be introduced for DRX cycle to adapt to different frame rates of XR traffic(e.g. FPS = 60/90/99/…). Additionally, a floor operation is added to the legacy DRX formula to calculate the start time of drx-onDurationTimer when rational number DRX cycles are configured, so that the start point of drx-onDurationTimer can be aligned with the boundary of slot. Taking the current DRX formula for long DRX cycle as an example, the formula is:
[bookmark: OLE_LINK8][(SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset (Eq3)
From a mathematical point of view, M modulo N and floor(M-floor(M/N)*N) are equivalent. To avoid the rounding error caused by modulo operation for rational numbers, Eq3 can be replaced by:
floor{M – floor(M/drx-LongCycle) * drx-LongCycle}= drx-StartOffset (Eq4)
where M = (SFN × 10) + subframe number.
Observation 3: To handle the mismatch between XR traffic and DRX cycle, introduce non-integer values for DRX cycle requires enhancement on the existing formula by replacing the modulo operation.

We can see that the solution of non-integer DRX cycle has a relatively small specification impact and a simple DRX formula. However, one main concern of introducing non-integer DRX cycle(s) is the lack of flexibility and backward compatibility. Let's consider an XR service with a new frame rate, e.g. FPS = 99, appears after Rel-18 is frozen. Then the Rel-18 UE, which doesn’t support DRX cycle = 1000/99ms, cannot work in a power-efficient manner for this XR service.
Therefore, taking the backward compatibility problem into consideration, we prefer to configure UE with the XR traffic FPS, instead of non-integer DRX cycle, to calculate the start time of DRX on duration. For instance, introducing a new RRC parameter named drx_fps to represent the XR traffic periodicity, and using 1000/drx_fps to replace the drx-LongCycle in (Eq4):
floor{M – floor(M/1000*drx_fps) * 1000/drx_fps}= drx-StartOffset (Eq5)
where M = (SFN × 10) + subframe number.
As an example, with 8 bits drx_fps IE, the range of XR traffic FPS from 1 to 255 can be supported.
Observation 4: For introducing non-integer values for DRX cycle solution, introducing new DRX parameter drx_fps(i.e. 1/ DRX cycle) to replace DRX cycle can provide better backward compatibility.

We summarize the pros and cons of the three solutions in the following table:
Table 1: pros and cons of solutions to address the mismatch between XR traffic and DRX cycle
	
	Extra Complexity: Align from existing DRX model
	Extra Complexity:
Whether to introduce new DRX formula
	Backforward compatibility:
whether it can support new FPSs(e.g. 99) may be introduced in the future
	Signaling overhead

	Solution1：integer DRX cycle without dynamic adaptation

	Approach1：DRX cycles applied in turn
	, Yes
	,Yes
	, Yes
but may involve complicated configuration
	, Low

	
	Approach2： multiple DRX configurations applied simultaneously
	, No
In existing DRX model, only one DRX configuration applied in one DRX group at any time
	, No
Reuse the existing formula
	, Yes
but may involve complicated configuration
	, Low

	
	Approach3：multiple DRX on duration in one cycle
	, No
In existing DRX model, only one DRX on duration in one cycle
	, No
Reuse the existing formula
	, Yes
but may involve complicated configuration
	, Low

	
	Approach4：add a time offset every N drx cycles
	, Yes
	,Yes
	, Yes/No
Yes for most cases
No for special cases, e.g. FPS = 99
	, Low

	Solution2: integer DRX cycle with dynamic adaptation
	, Yes
	, No
Reuse the existing form formula
	, Yes
without extra complexity
	, High, dynamic indication to adjust the start offset of DRX cycle frequently

	Solution3: non-integer DRX cycle
	, Yes
	, Yes, but
Reuse the existing formula with some adaptations for rational DRX cycles
	, Yes
without extra complexity
	, Low

Take the pros and cons in the above table into account, we propose:
Proposal 1: Introduce non-integer DRX cycle values to handle the mismatch between XR traffic and DRX cycle.
Proposal 2: The start time of DRX on-duration started in the subframe where:
floor{M – floor(M/1000*drx_fps) * 1000/drx_fps}= drx-StartOffset
where M = (SFN × 10) + subframe number, and drx_fps is configured according to the FPS of XR traffic by network.

2.2. SFN wrap-around
According to the current specification, the DRX on-duration timer starts when SFN and subframe number satisfy (Eq3). In (Eq3), SFN takes the value of 0~1023, i.e., wraps around every 10240ms. Therefore, when the DRX cycle is set to a value when 10240ms is not integer times of DRX cycle (e.g. 50ms), there will be a problem that the start point of the first DRX on-duration after SFN wrap-around is shifted with a wrong offset and then propagates this offset to the following cycles. The unexpected offset causes a mismatch between DRX on-duration and XR traffic arrival time and leads to extra latency.
To handle this issue, we propose to modify the formula by introducing hyper frame number, which is the concept from eDRX cycle in idle/inactive mode:
 [(SFN + 1024* H-SFN) × 10+ subframe number] mod (drx-LongCycle) = drx-StartOffset. (Eq6)
Proposal 3: To handle the SFN wrap-around issue, introduce hyper frame number in the formula used to determine the start point of DRX on-duration.

In order to resolve the problem of mismatch between DRX cycle and XR traffic periodicity and SFN wrap-around at the same time, we propose to extend (Eq6) as:
floor{M – floor(M/1000*drx_fps) * 1000/drx_fps}= drx-StartOffset (Eq7)
where M = [(SFN + 1024* H-SFN) × 10+ subframe number]

Proposal 4: To address the mismatch between DRX cycle and XR traffic periodicity and SFN wrap-around issues at the same time, the start time of DRX on-duration started in the subframe where:
floor{M – floor(M/1000*drx_fps) * 1000/drx_fps}= drx-StartOffset
where M = (SFN + 1024* H-SFN) × 10 + subframe number, and drx_fps is configured according to the FPS of XR traffic by network.
3. Conclusion
In this contribution, we discuss the DRX enhancement solutions to address the DRX cycle misalignment issue. Based on the discussion, we have the following observations and proposals:
Observation 1: To handle the mismatch between XR traffic and DRX cycle, adjust the DRX pattern according to RRC pre-configuration leads to relatively large specification impact, e.g. introduce new DRX model or new DRX formula.
Observation 2: To handle the mismatch between XR traffic and DRX cycle, dynamic adaptation of a pre-configured DRX configuration solution leads to small/no impact to current DRX configuration procedure and DRX formula, at the cost of more L1/L2 signalling overhead.
Observation 3: To handle the mismatch between XR traffic and DRX cycle, introduce non-integer values for DRX cycle requires enhancement on the existing formula by replacing the modulo operation.
Observation 4: For introduce non-integer values for DRX cycle solution, introduce new DRX parameter drx_fps(i.e. 1/ DRX cycle) to replace DRX cycle can provide better backward compatibility.

Proposal 1: Introduce non-integer DRX cycle values to handle the mismatch between XR traffic and DRX cycle.
Proposal 2: The start time of DRX on-duration started in the subframe where:
floor{M – floor(M/1000*drx_fps) * 1000/drx_fps}= drx-StartOffset
where M = (SFN × 10) + subframe number, and drx_fps is configured according to the FPS of XR traffic by network.
Proposal 3: To handle the SFN wrap-around issue, introduce hyper frame number in the formula used to determine the start point of DRX on-duration.
Proposal 4: To address the mismatch between DRX cycle and XR traffic periodicity and SFN wrap-around issues at the same time, The start time of DRX on-duration started in the subframe where:
floor{M – floor(M/1000*drx_fps) * 1000/drx_fps}= drx-StartOffset
where M = (SFN + 1024* H-SFN) × 10 + subframe number, and drx_fps is configured according to the FPS of XR traffic by network.
4. References
[1] RP-223502 XR Enhancements for NR. Nokia, Qualcomm
[2] TR38.835 Study on XR enhancements for NR
[3] R2-2209488 Discussion on DRX Enhancements for XR Power Saving. vivo
[4] R2-2208440 Discussion on XR-specific power saving. CMCC
[5] R1-2207061 Evaluation on XR specific power saving techniques. ZTE, Sanechips
[6] R2-2209516 Further discussion on C-DRX enhancements for XR. Huawei, HiSilicon
[7] [bookmark: OLE_LINK7]R2-2208680 Discussion on power saving enhancements for XR. Ericsson
[8] R2-2210692 Discussion on solutions for DRX cycle mismatch and jitter. Ericsson
[9] R2-2207045 Power saving enhancements for XR. Qualcomm Incorporated
[10] R2-2208020 XR power saving enhancements. Nokia, Nokia Shanghai Bell
[11] TS38.321 NR Medium Access Control (MAC) protocol specification
image1.emf
ON

ON

ON ON

ON ON ON ON ON ON

DRX cycle = 50ms

XR non-integer

traffic period =

16.67ms

DRX

start-offset

 = 16ms

DRX start-offset

 = 33ms

ON

DRX cfg.1

DRX cfg.2

DRX cfg

Approach 2: Configure

three DRX configurations

Approach 3: Configure 3

DRX ondurations within a

DRX cycle.

DRX cfg.3

DRX

start-offset

 = 0ms

ON

16 17 17

ON ON ON ON ON ON

DRX cycle1 DRX cycle2 DRX cycle3

DRX cycle set/pattern

Approach 1: Configure

DRX cycle set/pattern

ON ON

DRX cycle = 50ms

DRX cfg

16

Approach 4: Configure

traffic_time_offset and

drx_offset

16

ON ON ON ON

traffic_time_offset = 2ms

drx_offset = 3

DRX cycle = 50ms

DRX cycle = 50ms

16

Microsoft_Visio_Drawing.vsdx
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
DRX cycle = 50ms
XR non-integer traffic period = 16.67ms
DRX
start-offset
 = 16ms
DRX start-offset
 = 33ms
ON
DRX cfg.1
DRX cfg.2
DRX cfg
Approach 2: Configure three DRX configurations
Approach 3: Configure 3 DRX ondurations within a DRX cycle.
DRX cfg.3
DRX
start-offset
 = 0ms
ON
16
17
17
ON
ON
ON
ON
ON
ON
DRX cycle1
DRX cycle2
DRX cycle3
DRX cycle set/pattern
Approach 1: Configure DRX cycle set/pattern
ON
ON
DRX cycle = 50ms
DRX cfg
16
Approach 4: Configure traffic_time_offset and drx_offset
16
ON
ON
ON
ON
traffic_time_offset = 2ms
drx_offset = 3
DRX cycle = 50ms
DRX cycle = 50ms
16

