3GPP TSG-RAN WG2 Meeting #117-e	R2-2202637
e-Meeting, 21st Feb – 3rd March 2022	

Agenda item:	5.4.1
Source:	Intel Corporation
Title:	Issues with use of NCC for KgNB derivation during re-establishment and Resume procedure
WID/SID:	NR_newRAT-Core
Document for:	Discussion and Decision
Introduction
KgNB key derivation is covered in SA3 TS 33.501 and RRC specifications and two types of key derivation are specified – horizontal and vertical. KgNB derivation is performed during SMC, HO with sync, Re-establishment and Resume procedure. However, the current procedural text for KgNB derivation for the Resume and Re-establishment procedures is not correct or consistent. This document discusses the issue in detail and suggests possible corrections.
Discussion
Background
KgNB is the root security key used by the UE and is calculated at the UE based on the value of the NCC provided by the network and secret key based in the USIM. For the same NAS authentication (identified by keySetChangeIndicator), two types of key derivations for KgNB – horizontal and vertical - are supported in NR (and LTE) as specified in SA3 TS 33.501. Whether the UE does horizontal or vertical key derivation depends on the value of the NCC received at the time of the key derivation and the NCC that was used for the previous key derivation. If the newly received NCC value is the same as the one used for the previous KgNB derivation, horizontal key derivation is used. If the currently received NCC and the one used for the previous key is different (higher value), vertical key derivation is used. This is represented by the following figure from TS 33.501.

Figure 6.9.2.1.1-1: Model for the handover key chaining

In RRC, new KgNB can be derived for the following procedures: Security mode command, RRC reconfiguration with Sync, Re-establishment and Resume.
As Security mode command is only used at the time of RRC connection establishment, there is no previous key and hence there is no possibility of horizontal/vertical key derivation and no NCC is provided in the SMC.
For the other procedures, to decide whether the UE should perform horizontal or vertical key derivation, UE has to compare the currently received NCC with the NCC used for the derivation of the previous KgNB. To do this, the NCC value received by the UE has to be stored by the UE after derivation of the KgNB to compare the next time when the UE receives an NCC value. This is captured in the specification for RRC Reconfiguration with sync as follows:
2>	if the keySetChangeIndicator is set to true:
3>	derive or update the KgNB key based on the KAMF key, as specified in TS 33.501 [11];
2>	else:
3>	derive or update the KgNB key based on the current KgNB key or the NH, using the nextHopChainingCount value indicated in the received masterKeyUpdate, as specified in TS 33.501 [11];
2>	store the nextHopChainingCount value;
While RRC does not go into the details of how the key derivation is done (e.g., differentiating between horizontal and vertical), note that the key derivation is done first (by comparing the previously stored NCC value and the currently received value) and then the latest NCC value received (that also corresponds to the new derived KgNB) is stored for the next key derivation.
Observation #1: The NCC received (and used to calculate the KgNB) has to be stored by the UE and used to decide between horizontal and vertical key derivation the next time when the UE receives an NCC.
As mentioned earlier, this key derivation is also used for re-establishment and Resume. However, the current specification text for these procedures does not capture this behaviour correctly and is discussed further below.
KgNB derivation in Re-establishment procedure
The current specification text for re-establishment is as follows:
1>	store the nextHopChainingCount value indicated in the RRCReestablishment message;
1>	update the KgNB key based on the current KgNB key or the NH, using the stored nextHopChainingCount value, as specified in TS 33.501 [11];
Issue with Re-establishment procedure
The issue here is that the storage of the NCC is the done before the key is calculated and overwrites the previously stored NCC used to calculate the KgNB currently in use. Hence it is not possible to compare the currently received NCC with the previously received NCC to determine whether it is horizontal or vertical key derivation. If the current procedure text is followed explicitly, it will imply that the comparison of NCCs will always result in horizontal key derivation as the stored and the currently received values are the same.
Observation #2: The current procedural text for NCC storage and key derivation in re-establishment procedure is incorrect and result in wrong KgNBs. To correct this, the NCC storage has to be done after key derivation instead of earlier.
This can be corrected as follows:
1>	store the nextHopChainingCount value indicated in the RRCReestablishment message;
1>	update the KgNB key based on the current KgNB key or the NH, using the stored received nextHopChainingCount value, as specified in TS 33.501 [11];
1>	store the nextHopChainingCount value received in the RRCReestablishment message;
Proposal #1: Correct 38.331 procedural text for the re-establishment with the TP shown above (i.e. storing the NCC received in the RRCReestablishment message after updating the KgNB key with the received NCC).
KgNB derivation in Resume procedure
Suspend and Resume procedure is different to the reconfig with sync and Re-establishment procedure in that the NCC is provided in advance in the RRC Release message with the suspend configuration. The key received in the RRC Release message is stored and used for the next key derivation as part of the Resume procedure. This is captured as follows:
In the RRC release procedure (NCC is part of the suspendConfig):
1>	if the RRCRelease includes suspendConfig:
2>	apply the received suspendConfig;
 The KgNB in use (to be used for horizontal key derivation during the Resume procedure) is stored as follows:
Case 1) the RRC Release is received immediately in response to a Resume request (i.e., a stored INACTIVE AS context exists):
4>	replace the KgNB and KRRCint keys with the current KgNB and KRRCint keys;
Case 2) else:
3>	store in the UE Inactive AS Context the current KgNB and KRRCint keys,
The key derivation is done in the Resume procedure using:
1>	derive the KgNB key based on the current KgNB key or the NH, using the stored nextHopChainingCount value, as specified in TS 33.501 [11];
There is no explicit procedure text related to storage of NCC itself.
Issues with Resume procedure:
There are a couple of issues with current resume procedure text:
Issue 1. Received NCC in RRC Release message cannot be “applied” when RRC Release message is received.
While the specification says “apply the received suspendConfig”, the NCC in it cannot be applied (i.e., new key derivation cannot be done) until the Resume procedure. Instead, the new NCC value received should just be stored.
Issue 2. The NCC corresponding to the current KgNB in use is not stored
After KgNB derivation, the NCC corresponding to the current KgNB in use should be stored (along with the current KgNB) so UE can compare the NCC value received in a subsequent message (e.g., Reconfig with sync, RRCRelease) with the NCC value corresponding to the KgNB currently in use to determine whether to perform horizontal or vertical key derivation for the next key derivation.
Issue 3. In the Resume procedure the “using the stored nextHopChainingCount value” is not clear.
As mentioned above, there should be two NCC values during Resume that should be compared to derive the new key. It is not clear which stored NCC value is stored and which one this is referring to or how it is used.
A solution that addresses these issues, the UE handling on reception of RRC Reject must also be considered as discussed below.
Observation #3: The current specification text related to the storage and usage of NCC during Resume procedure is inconsistent and incorrect and can result in wrong KgNB during Handover, Reestablishment or Resume procedure and failure of these procedures.
Handling during reception of RRC Reject after ResumeRequest
On receipt of an RRC Reject in response to ResumeRequest, the newly derived KgNBs during ResumeRequest procedure should be discarded:
discard the current KgNB key, the KRRCenc key, the KRRCint key, the KUPint key and the KUPenc key derived in accordance with 5.3.13.3;
This makes it a bit difficult to handle the NCC value associated with these keys – it should not be stored immediately after the KgNB is derived during the ResumeRequest procedure. Instead the NCC can only be stored on receipt of the Resume message that ensures that the generated KgNB during ResumeRequest is actually going to be used.
Observation #4: As derived KgNB could be discarded on reception of RRCReject message, NCC used to derive the KgNB key (during initiation of ResumeReq) cannot be stored until after reception of the Resume message.
Summary of changes to correct the NCC handling during Resume procedure
The figure below summarises the required handling of the NCC during the various messages linked to the Resume procedure. The text in red shows the changes needed to the existing procedural text to address the issues listed above.

Figure showing the required storage of the NCC during Resume procedure. Text in red shows the additions required to current procedural text

Need for specification change for Resume procedure
It could be argued that the above discussed behaviour regarding NCC storage and usage can be considered an internal UE implementation aspect and the current specification can be understood correctly based on the current SA3 specification and possibility of wrong implementation is minimal. On the other hand, the current specification is incomplete, inconsistent and incorrect in the handling of NCC for key derivation.
These changes (including the re-establishment related ones) are captured in CRs [R2-2202638]. The summary of changes for Resume are:
The nextHopChainingCount received in RRC Release message is stored in UE Inactive context. The value of nextHopChainingCount used for the current KgNB is stored on receipt of Resume message and also on receipt of RRCRelease in response to a ResumeRequest. Clarified that the value of nextHopChainingCount received in RRCRelease message and stored in UE Inactive context is used for key derivation during ResumeRequest procedure.
Proposal #2: Discuss if the above specification corrections regarding handling of NCC for Resume procedure as captured on corresponding CR R2-2202638 are essential and if so for which release.
Summary and proposals
This document discussed the use of NCC during re-establishment and Resume procedure. A number of issues were identified and corrections proposed. The following observations and proposals were made:
Observation #1: The NCC received (and used to calculate the KgNB) has to be stored by the UE and used to decide between horizontal and vertical key derivation the next time when the UE receives an NCC.
Observation #2: The current procedural text for NCC storage and key derivation in re-establishment procedure is incorrect and result in wrong KgNBs. To correct this, the NCC storage has to be done after key derivation instead of earlier.
Proposal #1: Correct 38.331 procedural text for the re-establishment with the TP shown above (i.e. storing the NCC received in the RRCReestablishment message after updating the KgNB key with the received NCC).
Observation #3: The current specification text related to the storage and usage of NCC during Resume procedure is inconsistent and incorrect and can result in wrong KgNB during Handover, Reestablishment or Resume procedure and failure of these procedures.
Observation #4: As derived KgNB could be discarded on reception of RRCReject message, NCC used to derive the KgNB key (during initiation of ResumeReq) cannot be stored until after reception of the Resume message.
Proposal #2: Discuss if the above specification corrections regarding handling of NCC for Resume procedure as captured on corresponding CR R2-2202638 are essential and if so for which release.

image1.emf
K

AMF

NH

NH

(K

gNB

)

Initial

NAS uplink COUNT

NCC = 1

NCC = 2

NCC = 0

K

gNB

K

gNB

K

gNB

PCI, DL

frequency

K

NG-RAN

*

PCI, DL

frequency

NH

NCC = 3

K

NG-RAN

*

K

gNB

K

gNB

K

gNB

PCI, DL

frequency

K

NG-RAN

*

PCI, DL

frequency

K

NG-RAN

*

K

gNB

K

gNB

K

gNB

PCI, DL

frequency

K

NG-RAN

*

PCI, DL

frequency

K

NG-RAN

*

PCI, DL

frequency

PCI, DL

frequency

K

NG-RAN

*

K

NG-RAN

*

Microsoft_Visio_Drawing.vsdx
KAMF
NH
NH
(KgNB)
Initial
NAS uplink COUNT
NCC = 1
NCC = 2
NCC = 0
KgNB
KgNB
KgNB
PCI, DL frequency
KNG-RAN*
PCI, DL frequency
NH
NCC = 3
KNG-RAN*
KgNB
KgNB
KgNB
PCI, DL frequency
KNG-RAN*
PCI, DL frequency
KNG-RAN*
KgNB
KgNB
KgNB
PCI, DL frequency
KNG-RAN*
PCI, DL frequency
KNG-RAN*
PCI, DL frequency
PCI, DL frequency
KNG-RAN*
KNG-RAN*

image2.emf
RRC_INACTIVE state

(stored NCC (as part

of UE configuration

from connected),

KgNB, KRRCint, C-

RNTI, Cell ID, PCI, New

NCC͛Ϳ

RRC_CONNECTED state

(stored NCC associated

with the keys)

Store current

UE

configuration

(including

NCC), Store in

UE AS context

the current

KgNB,

K_RRCint, C-

RNTI, Cell ID,

PCI and NCC͛Ϳ

RRC Release

With suspend

configuration

(NCC͛Ϳ

Restore KgNB, K_RRCint,

Calculate ResumeMAC-I

Derive new KgNB, other

keys

Configure lower layers

with new keys

Resume

Trigger

Send

ResumeReq

Discard AS Context

(including stored NCC͕͛�

keys), store NCC͛�

associated with the

current keys in UE

configuration

Resume

Replace KgNB, K_RRCint,

replace NCC͕͛�NCC͕͛͛�store

C-RNTI, CellID,

RRC Release with

suspend config

(NCC͛͛Ϳ

Discard new derived keys

Reject

Resume

Initiated

͞State͟

Microsoft_Visio_Drawing1.vsdx
RRC_INACTIVE state
(stored NCC (as part of UE configuration from connected), KgNB, KRRCint, C-RNTI, Cell ID, PCI, New NCC’)
RRC_CONNECTED state
(stored NCC associated with the keys)
Store current UE configuration (including NCC), Store in UE AS context the current KgNB, K_RRCint, C-RNTI, Cell ID, PCI and NCC’)
RRC Release
With suspend configuration
(NCC’)
Restore KgNB, K_RRCint, Calculate ResumeMAC-I
Derive new KgNB, other keys
Configure lower layers with new keys
Resume
Trigger
Send
ResumeReq
Discard AS Context (including stored NCC’, keys), store NCC’ associated with the current keys in UE configuration
Resume
Replace KgNB, K_RRCint, replace NCC’, NCC’’, store C-RNTI, CellID,
RRC Release with suspend config (NCC’’)
Discard new derived keys
Reject
Resume Initiated
“State”

