Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-RAN WG2 #116e	Tdoc R2-2110560
Electronic meeting, 2021-11-01 - 2021-11-12

Agenda Item:	8.18 NR R17 RACH indication and partitioning
Source:	Ericsson
Title:	RNTI collision problem for Rel-17 features
Document for:	Discussion, Decision

1	Introduction
RACH partitioning is being considered for several Rel-17 features to enable early identification of the feature on the network side (see table below). In this contribution we discuss some general aspects of RACH partitioning and describe what a common solution for RACH partitioning for the Rel-17 features might look like.
	Feature
	Reason for RACH indication

	RedCap [1]
	To indicate reduced capabilities to the network in MSG1 so that the network can adapt subsequent transmissions

	SDT [2]
	To request a larger MSG3 size (or MSGA size in case of 2-step RA)

	CovEnh [3]
	To indicate need for coverage enhancement (esp. for request of MSG3 repetition)

	Slicing [4]
	To indicate high priority slice to the network and to achieve slice isolation also for RACH


 
[bookmark: _Ref178064866]2	Discussion
If the possibility to have a separate PRACH configuration for each feature combination is agreed the system could be affected by RNTI collision problem. In this section we consider only 4-step RACH, but the same reasoning holds for 2-step RACH too.
The RA-RNTI is calculated based on the following formula [5]:
RA-RNTI = 1 + s_id + 14 × t_id + 14 × 80 × f_id + 14 × 80 × 8 × ul_carrier_id
This means that two different RO can be mapped to the same RA-RNTI if all the parameters in the formula have the same value, in other words if these two ROs are time aligned (s_id, t_id), they belong to the same carrier (ul_carrier_id) and have the same frequency index within the PRACH slot (f_id). Figure 1 shows an example of a possible configuration where two ROs in two different PRACH configurations are mapped to the same RA-RNTI.
[image: ]
[bookmark: _Ref84333159]Figure 1: Example of two PRACH configuration with two ROs mapped to the same RA-RNTI
[bookmark: _Toc85545617]Two ROs belonging to two different PRACH configurations are mapped to the same RNTI if they are time-aligned, they have the same frequency index and if they belong to the same carrier
If the two colliding ROs are mapped to different feature combinations it might happen that two UEs, each of them wanting to indicate one of the two feature combinations, select a preamble in the corresponding RO and then they start both monitoring PDCCH for the same RA-RNTI, waiting for Msg2.
This alone is not sufficient to cause a RNTI collision. Firstly, the two UEs have to monitor the same Search Space, otherwise the network would send each Msg2 in the correct search space and each UE would receive only the correct Msg2.
[bookmark: _Toc85545618]An RNTI collision may happen only if the interested UEs are monitoring the same Search Space or if the Search Spaces are overlapped
Secondly, even if a UE starts decoding the wrong Msg2, each RAR is associated to a specific RAPID, therefore unless also the RAPID was the same as the one directed to the second UE, the UE will simply ignore all RARs contained in the wrong Msg2. This is true under the assumption that the MAC PDU format for Msg2 will still be the same as legacy, and so each UE is able to correctly interpret the E/T/RAPID subheader. 
For 2-step RACH in case fallbackRAR is sent, the same reasoning as for 4-step RACH holds, otherwise for successRAR the UE would decode directly the UE Contention Resolution Identity which is unique and therefore any faulty behaviour is avoided.
[bookmark: _Toc85545619]For 4-step RACH a faulty behaviour due to RNTI collision can happen only if both UEs selects the same preamble index in the colliding ROs
[bookmark: _Toc85545620]For 2-step RACH a faulty behaviour due to RNTI collision can happen only if both UEs select the same preamble index in the colliding ROs and a fallbackRAR is sent to both UEs. For successRAR no faulty behaviour is possible.
Regardless of how much the event of RNTI collision where a UE ends up decoding and interpreting a RAR that was not directed to it may be unlikely, RAN2 may still want to find a solution for this case. 
Moreover, in case an RNTI collision happens meaning that a UE decodes a RAR that was directed to another UE, assuming that it is able to decode this RAR it will then send a Msg3 in the same resources as the second UE. This case can be already solved by the legacy Contention Resolution mechanism, as it is analogous to a preamble collision. The problem is more relevant if the RAR received is carrying different information, or information that were not expected by the UE. For instance, in case of Coverage Enhancement, the RAR would likely carry the number of repetitions to apply in Msg3. A UE that does not support Coverage Enhancement would not be able to interpret this RAR correctly.
[bookmark: _Toc85545621]If a UE receives the RAR directed to another UE, and it is able to interpret this RAR format, the collision can be resolved by the legacy Contention Resolution
[bookmark: _Toc85545622]If a UE receives the RAR directed to another UE, and this RAR has a different format than what the UE expects, this would lead to unpredictable issues that cannot be resolved by legacy Contention Resolution
Regarding possible solutions to the problem, one might argue that it could be up to gNB to avoid a PRACH configuration that leads to time-aligned ROs so that all RNTIs generated are always distinct.
Nevertheless, this approach might be hard to achieve or at least would considerably reduce the system flexibility. 
Consider for example that the network would like to configure two PRACH indexes. There is a large amount of possible combinations of two PRACH indexes, some combinations are affected by RNTI-collisions and some other are not. Figure 2 shows an histogram with the percentage of possible configurations affected by RNTI collisions. 35% - 55% of all the possible configurations are affected by RNTI collisions. 
[image: ]
[bookmark: _Ref84337123]Figure 2: Amount of configurations of 2 PRACH indexes that are affected by RNTI collision problem
For each problematic configuration there should be a number of “equivalent” configurations that are not affected by RNTI collisions. “Equivalent” here means that the other configuration has a similar number of preambles for each PRACH configuration (± 10%).
As can be seen from the plot in Figure 3, in 10% of the cases there is up to 1000 equivalent configurations that can be adopted without RNTI collisions instead of the original one. So, e.g., in 10 % of the cases, the network would have no problem at all to find another "equivalent" combination.
However, we also see that that in 50% to 65% of the cases there is no “equivalent” configuration at all. 
[image: ]
[bookmark: _Ref84337389]Figure 3: CDF of the number of equivalent configurations for each configuration affected by RNTI collision problem
In conclusion, letting gNB to avoid problematic configurations is not always possible and it would at least limit considerably the system flexibility.
[bookmark: _Toc85545623]Avoiding configurations affected by RNTI collision problem through gNB implementation might not be always possible of at least would considerably limit the system flexibility
It can be observed, though, that in a real deployment only a small subset of all possible RNTI values is actually used at the same time. If we consider only one carrier, the RA-RNTI can have around 9000 distinct values (from 0x0001 to 0x2300 in NUL and 0x2301 to 0x4600 for SUL according to TS 38.321), but all PRACH indexes define only few ROs and so only few RNTIs are actually used in the system.
The RNTIs not used by one PRACH configuration might be re-used by the additional PRACH configurations. It could be up to gNB to avoid RNTI collision by moving the RNTIs along the available address space in a coherent way.
[bookmark: _Toc85545624]The additional PRACH configurations can use the RNTI addresses that are not used by the legacy PRACH configuration in that specific scenario
A way to achieve this could be to have an additional custom RNTI offset associated to the additional PRACH configurations in RRC signalling. In the example in Figure 4, two PRACH configurations are defined so that one RO in each PRACH is mapped to the same RNTI (0x0005). A custom RNTI offset of 0x0010 is applied to the second PRACH configuration so that its three RNTIs are moved in a region of the address space that is not currently used by the first PRACH configuration and still part of the legacy address space for RA-RNTI. Both the Rel-17 UE and gNB are aware of this configuration, so they agree on the resulting RNTI value.
[image: ]
[bookmark: _Ref84339586]Figure 4: Example of solution to the RNTI collision problem through the application of a custom RNTI offset
[bookmark: _Toc85545625]A custom offset, signalled through RRC and associated to each PRACH configuration, is added in the formula for RA-RNTI and/or MSGB-RNTI. The legacy PRACH configuration it is assumed to have offset = 0

3 Conclusion
In the previous sections we made the following observations: 
Observation 1	Two ROs belonging to two different PRACH configurations are mapped to the same RNTI if they are time-aligned, they have the same frequency index and if they belong to the same carrier
Observation 2	An RNTI collision may happen only if the interested UEs are monitoring the same Search Space or if the Search Spaces are overlapped
Observation 3	For 4-step RACH a faulty behaviour due to RNTI collision can happen only if both UEs selects the same preamble index in the colliding ROs
Observation 4	For 2-step RACH a faulty behaviour due to RNTI collision can happen only if both UEs select the same preamble index in the colliding ROs and a fallbackRAR is sent to both UEs. For successRAR no faulty behaviour is possible.
Observation 5	If a UE receives the RAR directed to another UE, and it is able to interpret this RAR format, the collision can be resolved by the legacy Contention Resolution
Observation 6	If a UE receives the RAR directed to another UE, and this RAR has a different format than what the UE expects, this would lead to unpredictable issues that cannot be resolved by legacy Contention Resolution
Observation 7	Avoiding configurations affected by RNTI collision problem through gNB implementation might not be always possible of at least would considerably limit the system flexibility

Based on the discussion in the previous sections we propose the following:
Proposal 1	The additional PRACH configurations can use the RNTI addresses that are not used by the legacy PRACH configuration in that specific scenario
Proposal 2	A custom offset, signalled through RRC and associated to each PRACH configuration, is added in the formula for RA-RNTI and/or MSGB-RNTI. The legacy PRACH configuration it is assumed to have offset = 0
 

[bookmark: _In-sequence_SDU_delivery]References
RP-210918, “Revised WID on support of reduced capability NR devices”, RAN#91-e
RP-212594, “Revised WID on small data transmissions in INACTIVE state”, RAN#93-e
RP-211566, “Revised WID on NR coverage enhancements”, RAN#92-e
RP-212534, “Revised WID on enhancement of RAN Slicing for NR”, RAN#93-e
TS 38.321, Medium Access Control (MAC) protocol specification, v16.6.0, September 2021
	4/4	
image1.png
Feature X PRACH Slot

f_id=0 RO

f_id=1 RO

Feature Y PRACH Slot

o)





image2.emf
1

5

 

k

H

z

 

-

 

F

R

1

 

p

a

i

r

e

d

 

N

U

L

/

S

U

L

3

0

 

k

H

z

 

-

 

F

R

1

 

p

a

i

r

e

d

 

N

U

L

/

S

U

L

1

5

 

k

H

z

 

-

 

F

R

1

 

u

n

p

a

i

r

e

d

 

s

p

e

c

t

r

u

m

3

0

 

k

H

z

 

-

 

F

R

1

 

u

n

p

a

i

r

e

d

 

s

p

e

c

t

r

u

m

6

0

 

k

H

z

 

-

 

F

R

2

1

2

0

 

k

H

z

 

-

 

F

R

2

0

10

20

30

40

50

60

70

80

90

100

P

R

A

C

H

 

I

n

d

e

c

e

s

 

p

a

i

r

s

 

[

%

]

OK

RNTI Collision


image3.emf

image4.png
PRACH Config -> custom offset = 9x0000

Legacy After custom
offset
application

PRACH Config. 1 | 0x0001 0x0001

0%0005 0%0005
0%0009 0x0009
0x0461 0x0461
0%0465 0%0465
0x0469 0x0469

PRACH Config. 2 | 0x0003 0x0013

0%0005 0x0015
0x0007 0x0017





