[bookmark: OLE_LINK39]3GPP TSG-RAN WG2 Meeting #114 e 	R2-2105332
E-Meeting, 19th – 28th April, 2021
	
Source:	vivo
[bookmark: Title]Title:	Discussion on slice-based RACH configuration
[bookmark: Source]Agenda Item:	8.8.3
[bookmark: DocumentFor]Document for:	Discussion and Decision
1. [bookmark: OLE_LINK13][bookmark: OLE_LINK14]Introduction
At RAN2#113bis-e [1], RAN2 has made the following agreements on slice-based RACH procedure:
Agreements
1	RAN2 aims to support both RO partition and preambles partition.
2	scalingFactorBI and powerRampingStepHighPriority can be configured at least in SIB (FFS for dedicated RRC signalling).
3	Network can configure slices with 4-step or 2-step (or both) RA resources.
4	Legacy 2-step RA fallback mechanism is supported.
RAN2 has also made some common understanding on the following points:
	2: RAN2 will prioritize the discussion for slice specific RACH for IDLE and INACTIVE mode. And CONNECTED mode is down prioritized and can be considered if time allows.
3: Slice specific RACH (including RACH isolation and RACH prioritization) is only applied for CBRA but not for CFRA.
4: To ensure the backward compatibility, it is RAN2’s common understanding that common RACH resource should be configured in initial BWP if the slice specific RACH resource is configured in initial BWP.
6: RAN2 confirms that the issue of prioritization parameter collision with MPS/MCS need to be resolved. There is UE based solution (option 1, fixed rule) or network based solution (option 2, configurable rule) or both. Discussion on pros and cons can be left to next meeting.
5.1: RACH type selection between 2-step slice specific RACH and 4-step slice specific RACH is based on a RSRP threshold.
FFS to introduce a slice specific threshold or reuse the legacy threshold.
FFS UE should first select between slice specific RA and common RA or UE should first select RA type between 2-step RA and 4-step RA
5.2: The table from R2-2104322 can be used for further discussion.

This contribution further discusses remaining issues for slice-based RACH configuration as:
· Issue of prioritization parameter collision with MPS/MCS
· Selection between slice specific RA and common RA or UE should first select RA type between 2-step RA and 4-step RA
2. Discussion
2.1. [bookmark: _Hlk47332130]Parameter collision with MPS/MCS
Last meeting, with regard to slice RACH prioritization parameter collision with MPS/MCS during email discussion “[AT113bis-e][252][NR] Slice-specific RACH” two options were discussed as follows:
· [bookmark: _Hlk69669491]Option 1: It should be clearly specified in the specification.
· Option 1a: slice specific RA prioritization parameter should override MPS/MCS specific RA prioritization parameter.
· Option 1b: MPS/MCS specific RA prioritization parameter should override slice specific RA prioritization parameter.
· Option 1c: UE select the most beneficial parameters: max {powerRampingStepHighPriority for MPS/MCS, powerRampingStepHighPriority for slice} and min {scalingFactorBI for MPS/MCS, scalingFactorBI for slice}
· Option 2: It should be configurable by network.
There was no clear majority on which option to chose to resolve the issue of parameter collision.
The issue arises when slice-specific and MCS/MPS prioritizations have the same RA prioritization parameter type. To have a more flexible UE implementation, if such parameters collision happens, UE should be able to select the most beneficial parameters or UE may also chose to decide that slice specific RA parameters override MPS/MCS specific RA prioritization parameter.
To this issue, it is also possible that UE behavior is based on network configuration. This solution is simple and workable, but it lacks of flexibility. For example, even if UE can choose the most beneficial parameters, UE would blindly adopt network configuration.
Therefore,
Proposal 1： [bookmark: _Ref71558578]To resolve the issue of prioritization parameter collision with MPS/MCS one of the following options is considered:
a) [bookmark: _Ref71558589]UE select the most beneficial parameters: max {powerRampingStepHighPriority for MPS/MCS, powerRampingStepHighPriority for slice} and min {scalingFactorBI for MPS/MCS, scalingFactorBI for slice}
b) [bookmark: _Ref71558594]Up to UE implementation
2.2. Selection of slice RA
As shown in Table 1, network may configure RACH resource as follows:
· 2-step common RACH
· 2-step slice specific RACH
· 4-step common RACH
· 4-step slice specific RACH
Based on different RACH resource availability, UE may have to consider whether to first consider slice specific RA or first consider RA type, for example if case 3 in Table 1 used to happen, does UE choose the 2-step common RACH or 4-step slice specific RACH? In other word should UE first consider RA type or slice specific RA?
In our understanding, the main motivation of slice specific RACH resource configuration is for UE to use the configured slice specific resource for RACH procedure. If, RA type is prioritized and UE common RACH resource to access a slice, instead of using slice specific RACH resources, then configuration of slice specific RACH resources becomes meaningless.
Therefore,
Proposal 2： [bookmark: _Ref71558627]If slice specific RACH resources are configured, UE always first uses slice specific RA regardless of the RA type.

Table 1: RACH resource configuration cases
	Cases
	RACH resource configuration in one BWP
	RACH type selection for slice triggered access
	Fallback after MSGA or MSG1 attempt number beyond threshold

	Case 1
	2-step slice specific RACH
4-step common RACH
	FFS Always perform 2-step slice specific RACH
	Fallback to 4-step common RACH

	Case 2
	2-step slice specific RACH
4-step slice specific RACH
4-step common RACH
	RACH type selection based on RSRP threshold
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH

	FFS Case 3 is valid
	4-step slice specific RACH
2-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 4
	4-step slice specific RACH
4-step common RACH
	Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 5
	2-step slice specific RACH
2-step common RACH
4-step slice specific RACH
4-step common RACH
	RACH type selection based on RSRP threshold
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

	FFS
Case 6 is valid
	2-step slice specific RACH
2-step common RACH
	Always perform 2-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 7
	2-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 2-step slice specific RACH
	Fallback to 4-step common RACH.
No fallback to 2-step common RACH.

	FFS
Case 8 is valid
	4-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

If proposal 2 is agreed, then,
Observation 1: [bookmark: _Ref61595979][bookmark: _Ref71558697]Case 3, Case 6 and Case 8 RACH resource configuration can be considered as valid cases.
Therefore,
Proposal 3： [bookmark: _Ref71558641]RACH resource configuration Case 3, Case 6 and Case 8 are valid.
After performing slice specific RA and RACH procedure failed, UE can consider fallback if other RACH resources are available case-by-case according to Table 1 as follows:
· Case 1: UE always performs 2-step slice specific RACH and can fallback to 4-step common RACH
· Case 2: UE performs RACH based on RSRP threshold for slice specific RACH. If RACH procedure fails, as the choice the RACH type was based on RSRP threshold, if UE fallback to the second slice specific RACH, RACH procedure may also fail. Thus, UE should fallback to 4-step common RACH.
· Case 3: UE always performs 4-step slice specific RACH and can fallback to 2-step common RACH
· Case 4: UE always performs 4-step slice specific RACH and can fallback to 4-step common RACH
· Case 5: As for Case 2, UE performs RACH based on RSRP threshold for slice specific RACH. If RACH procedure fails, UE should not fallback to 4-step slice specific RACH, but fallback 2-step common RACH/4-step common RACH
· Case 6: UE always performs 2-step slice specific RACH and can fallback to 2-step common RACH
· Case 7: UE always performs 2-step slice specific RACH and can fallback to 2-step common RACH/4-step common RACH
· Case 8: UE always performs 4-step slice specific RACH and can fallback to 2-step common RACH/4-step common RACH
Proposal 4： [bookmark: _Ref71558647]If RACH procedure fails for slice specific RA, UE should not fallback to another slice specific RACH, instead UE fallback to common RACH.

Based on above consideration, the Table 1 can be updated as follows:
Table 2: RACH resource configuration cases
	Cases
	RACH resource configuration in one BWP
	RACH type selection for slice triggered access
	Fallback after MSGA or MSG1 attempt number beyond threshold

	Case 1
	2-step slice specific RACH
4-step common RACH
	FFS Always performs 2-step slice specific RACH
	Fallback to 4-step common RACH

	Case 2
	2-step slice specific RACH
4-step slice specific RACH
4-step common RACH
	Performs RACH type selection based on RSRP threshold for slice specific RACH
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH

	FFS Case 3 is valid
	4-step slice specific RACH
2-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 4
	4-step slice specific RACH
4-step common RACH
	Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 5
	2-step slice specific RACH
2-step common RACH
4-step slice specific RACH
4-step common RACH
	Performs RACH type selection based on RSRP threshold for slice specific RACH
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

	FFS
Case 6 is valid
	2-step slice specific RACH
2-step common RACH
	Always perform 2-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 7
	2-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 2-step slice specific RACH
	Fallback to 4-step common RACH.
No fallback to 2-step common RACH.

	FFS
Case 8 is valid
	4-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

Proposal 5： [bookmark: _Ref71558655]Agree to update Table 1 to the below Table 2 as baseline for further discussion
Table 2: RACH resource configuration cases
	Cases
	RACH resource configuration in one BWP
	RACH type selection for slice triggered access
	Fallback after MSGA or MSG1 attempt number beyond threshold

	Case 1
	2-step slice specific RACH
4-step common RACH
	FFS Always performs 2-step slice specific RACH
	Fallback to 4-step common RACH

	Case 2
	2-step slice specific RACH
4-step slice specific RACH
4-step common RACH
	Performs RACH type selection based on RSRP threshold for slice specific RACH
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH

	FFS Case 3 is valid
	4-step slice specific RACH
2-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 4
	4-step slice specific RACH
4-step common RACH
	Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 5
	2-step slice specific RACH
2-step common RACH
4-step slice specific RACH
4-step common RACH
	Performs RACH type selection based on RSRP threshold for slice specific RACH
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

	FFS
Case 6 is valid
	2-step slice specific RACH
2-step common RACH
	Always perform 2-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 7
	2-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 2-step slice specific RACH
	Fallback to 4-step common RACH.
No fallback to 2-step common RACH.

	FFS
Case 8 is valid
	4-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

3. Conclusion
This paper discussed some remaining issues on slice specific RACH configuration. The paper concludes with:
Observation 1:Case 3, Case 6 and Case 8 RACH resource configuration can be considered as valid cases.

Proposal 1：	To resolve the issue of prioritization parameter collision with MPS/MCS one of the following options is considered:
a)	UE select the most beneficial parameters: max {powerRampingStepHighPriority for MPS/MCS, powerRampingStepHighPriority for slice} and min {scalingFactorBI for MPS/MCS, scalingFactorBI for slice}
b)	Up to UE implementation
Proposal 2：	If slice specific RACH resources are configured, UE always first uses slice specific RA regardless of the RA type.
Proposal 3：	RACH resource configuration Case 3, Case 6 and Case 8 are valid.
Proposal 4：	If RACH procedure fails for slice specific RA, UE should not fallback to another slice specific RACH, instead UE fallback to common RACH.
Proposal 5：	Agree to update Table 1 to the below Table 2 as baseline for further discussion
Table 2: RACH resource configuration cases
	Cases
	RACH resource configuration in one BWP
	RACH type selection for slice triggered access
	Fallback after MSGA or MSG1 attempt number beyond threshold

	Case 1
	2-step slice specific RACH
4-step common RACH
	FFS Always performs 2-step slice specific RACH
	Fallback to 4-step common RACH

	Case 2
	2-step slice specific RACH
4-step slice specific RACH
4-step common RACH
	Performs RACH type selection based on RSRP threshold for slice specific RACH
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH

	FFS Case 3 is valid
	4-step slice specific RACH
2-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 4
	4-step slice specific RACH
4-step common RACH
	Always perform 4-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 5
	2-step slice specific RACH
2-step common RACH
4-step slice specific RACH
4-step common RACH
	Performs RACH type selection based on RSRP threshold for slice specific RACH
	Fallback to 4-step slice specific RACH.
FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

	FFS
Case 6 is valid
	2-step slice specific RACH
2-step common RACH
	Always perform 2-step slice specific RACH
	FFS:
No fallback vs. Fallback to common RACH

	Case 7
	2-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 2-step slice specific RACH
	Fallback to 4-step common RACH.
No fallback to 2-step common RACH.

	FFS
Case 8 is valid
	4-step slice specific RACH
2-step common RACH
4-step common RACH
	FFS Always perform 4-step slice specific RACH
	FFS Fallback from 4-step slice specific RACH to 4-step common RACH.

4. References
[1] R2-2104301	Report on LTE legacy, Mobility, DCCA, Multi-SIM and RAN slicing	Report	Vice Chairman (Nokia)
