[bookmark: OLE_LINK137][bookmark: OLE_LINK138][bookmark: _Toc20425633][bookmark: _Toc29321029][bookmark: _Toc36756613][bookmark: _Toc36836154][bookmark: _Toc36843131][bookmark: _Toc37067420]3GPP TSG-RAN WG2 Meeting #114-e	R2-2106115
Online, 19-27 May 2021

Agenda Item:	6.1.4.1.5
Source: 	MediaTek Inc., Intel Corporation
Title: 	Extension of candidateBeamRSList set to “release”

Document for:	Discussion, decision
[bookmark: OLE_LINK39][bookmark: OLE_LINK38][bookmark: OLE_LINK37]1	Introduction
This document addresses an issue with the non-critical extension of the field candidateBeamRSList in the IE BeamFailureRecoveryConfig.
[bookmark: OLE_LINK41][bookmark: OLE_LINK24][bookmark: OLE_LINK17][bookmark: OLE_LINK16]2	Discussion
2.1	Background
During the ASN.1 review for TS 38.331 v16.1.0, there was an offline discussion summarised in [1] that touched on the handling of the extension for candidateBeamRSList in BeamFailureRecoveryConfig. In section 2.2.1 of [1], it was agreed unanimously to use a non-critical extension for this list (hence the name candidateBeamRSListExt-r16 was changed to candidateBeamRSListExt-v1610). Originally, the extension list was implemented with a “size 0” option to allow release of the entries, but the discussion considered this mechanism (section 2.2.2 of [1]) and found that there was no consensus to support it. In consequence, the extension list was implemented as a SetupRelease structure in order to allow release of the extended entries. The result in the current ASN.1 is as follows:
BeamFailureRecoveryConfig ::= SEQUENCE {
 rootSequenceIndex-BFR INTEGER (0..137) OPTIONAL, -- Need M
 rach-ConfigBFR RACH-ConfigGeneric OPTIONAL, -- Need M
 rsrp-ThresholdSSB RSRP-Range OPTIONAL, -- Need M
 candidateBeamRSList SEQUENCE (SIZE(1..maxNrofCandidateBeams)) OF PRACH-ResourceDedicatedBFR OPTIONAL, -- Need M
 ssb-perRACH-Occasion ENUMERATED {oneEighth, oneFourth, oneHalf, one, two,
 four, eight, sixteen} OPTIONAL, -- Need M
 ra-ssb-OccasionMaskIndex INTEGER (0..15) OPTIONAL, -- Need M
 recoverySearchSpaceId SearchSpaceId OPTIONAL, -- Need R
 ra-Prioritization RA-Prioritization OPTIONAL, -- Need R
 beamFailureRecoveryTimer ENUMERATED {ms10, ms20, ms40, ms60, ms80, ms100, ms150, ms200} OPTIONAL, -- Need M
 ...,
 [[
 msg1-SubcarrierSpacing SubcarrierSpacing OPTIONAL -- Need M
]],
 [[
 ra-PrioritizationTwoStep-r16 RA-Prioritization OPTIONAL, -- Need R
 candidateBeamRSListExt-v1610 SetupRelease{ CandidateBeamRSListExt-r16 } OPTIONAL -- Need M
]],
 [[
 spCell-BFR-CBRA-r16 ENUMERATED {true} OPTIONAL -- Need R
]]
}

[...]

CandidateBeamRSListExt-r16::= SEQUENCE (SIZE(1.. maxNrofCandidateBeamsExt-r16)) OF PRACH-ResourceDedicatedBFR

2.2	Ambiguity and options for solution
In general, when the ASN.1 contains a non-critical extension of a list, the UE is guided to concatenate the fields and manage them as a single list (section 5.1.2 of [2]); furthermore, it was expressed in the email discussion of [1] (but not captured in the spec) that “The UE only has one list and it doesn’t store which field was used to configure the list.” This creates an ambiguity when candidateBeamRSListExt-v1610 is set to release:
Option 1: The UE releases the entire concatenated list, both the entries configured with candidateBeamRSList and the entries configured with candidateBeamRSListExt-v1610.
Option 2: The UE releases only the extended entries that were configured with candidateBeamRSListExt-v1610.
A third option would be to deprecate the release branch of the SetupRelease construct, and modify the behaviour on absence so that the UE treats the original and extended lists as a single Need M field; that is, the network can send candidateBeamRSList with or without candidateBeamRSListExt-v1610, and when the IE is received, the concatenated list of the included fields wholly replaces the stored list. This is somewhat in line with the general handling of lists not using the ToAddMod construction, where signalling a new list always replaces the old list in its entirety.
Option 3: The release branch is not used, and the UE treats candidateBeamRSList and candidateBeamRSListExt-v1610 as a single concatenated field with Need M. The extended list candidateBeamRSListExt-v1610 is only included when candidateBeamRSList is included and fully populated.
The implementation of option 3 requires some care, because the existing Need M code on candidateBeamRSListExt-v1610 would no longer be applicable. Rather, the field would behave as Need R when candidateBeamRSList is included, and not included (and handled as Need M) when candidateBeamRSList is included. The easiest way to implement this might be to change the need code to Need S, and specify the behaviour in the field description.
2.3	Tradeoffs between options
Options 1 and 2 are similar in terms of specification impact; each one requires some explanation in the field description of how the release branch is handled. Both options work, but each has a failure mode in which a specific release operation is not supported (as with Rel-15, where candidateBeamRSList cannot be released). In option 1, there is no way to release only the entries from candidateBeamRSListExt-v1610 except by a release-and-add of the BeamFailureRecoveryConfig structure. In option 2, there is no way to release the entire list except by a similar release-and-add.
Option 3 has different specification impact, because the need code of candidateBeamRSListExt-v1610 needs to be changed and the behaviour on absence specified. There is no specific failure mode, in the sense that any modification of the list is possible. However, this solution requires the change of an existing need code, and it changes the behaviour when the network includes candidateBeamRSList but excludes candidateBeamRSListExt-v1610. With option 3, this combination would result in deleting the extended entries; with the current specification, it results in maintaining the original entries in accordance with the Need M code.
Proposal 1: Discuss which of the three options above should be adopted.
As seen in the discussion from [1], the original intention was that the SetupRelease construct eliminates the need for an extension list of size 0; this may suggest option 2 (since the size 0 list only applied to the extension field, and there was originally no way to release the entire list). However, we assume some offline discussion is necessary to allow companies to consider the alternatives especially as the behaviour of the combination of the lists was not discussed, and UE implementation of option 2 may not be completely straightforward as discussed below.
It follows from option 2 that the UE needs to know which entries of the concatenated list originated from which field. This is contrary to the usual practice (section 5.1.2 of [2]) and to the expectation during the email discussion. At first glance, this requirement appears to create no real burden for the UE, because the extension list is used only when the original list is fully populated; that is, the UE should always be able to assume that the first 16 entries (maxNrofCandidateBeams) of the list are the original entries, and any subsequent entries are from the extension. However, this is wrong! Consider the following sequence of events (assuming option 2):
1. The network sends a BeamFailureRecoveryConfig containing a fully populated candidateBeamRSList (16 entries) and a partly populated candidateBeamRSListExt-v1610 (2 entries).
2. The UE concatenates the fields into a single list of 18 entries.
3. The network sends a BeamFailureRecoveryConfig containing a partially populated candidateBeamRSList (15 entries) and does not include candidateBeamRSListExt-v1610.
4. The UE replaces the original 16 entries with the new 15 entries (in accordance with the list handling guidelines in Annex A.3.10 of [2]) and retains the 2 extended entries (because candidateBeamRSListExt-v1610 is Need M), resulting in a list of 17 entries.
5. The network sends a BeamFailureRecoveryConfig containing no candidateBeamRSList and candidateBeamRSListExt-v1610 set to release.
6. The UE needs to release the 16th and 17th entries, which were originally configured with candidateBeamRSListExt-v1610.
This scenario could be addressed in two ways: network-centric (if the network has shortened the original list, it always includes both lists explicitly; in this case, in step 5 it would need to send candidateBeamRSList containing the desired 15 entries, together with candidateBeamRSListExt-v1610 set to release) or UE-centric (the UE retains the information on which entry was configured by which list). A UE-centric solution does not require explicit spec language but can be inferred from the requirement to release only the extended entries.
Proposal 2: If option 2 is adopted, discuss whether to use a network-centric or UE-centric solution for the case in which the network wants to configure/release the extended list entries after it has shortened the original list.
Finally, there was an intention expressed in [1] to have the extension field used (for setup) only when the original list is fully populated, i.e. the network does not configure the UE with a partially populated (fewer than 16 entries) candidateBeamRSList together with candidateBeamRSListExt-v1610 set to setup. The exact wording in section 2.2.1 of [1] was “ext is only signalled along with the original field and only when the number of entries is larger than maxA” (“maxA” was a shorthand name for the constant now called maxNrofCandidateBeams), but this constraint was not captured in the spec.
Proposal 3: Capture in the field description that candidateBeamRSListExt-v1610 is included and set to setup only in the case that candidateBeamRSList is included and populated with maxNrofCandidateBeams entries.
Note that proposal 3 eliminates the possibility for the network to configure the UE with 16 entries in candidateBeamRSList, then send a message containing only candidateBeamRSListExt-v1610 set to setup to add more entries; this is in line with the discussion from [1] but introduces some extra overhead in occasional scenarios.
3	Conclusion
This document promulgated the following proposals:
Proposal 1: Discuss which of the three options above should be adopted.
Proposal 2: If option 2 is adopted, discuss whether to use a network-centric or UE-centric solution for the case in which the network wants to configure/release the extended list entries after it has shortened the original list.
Proposal 3: Capture in the field description that candidateBeamRSListExt-v1610 is included and set to setup only in the case that candidateBeamRSList is included and populated with maxNrofCandidateBeams entries.
Accompanying CRs implementing the three options are provided in [3], [4], and [5].
4	References
[1]	R2-2006343, “Summary of [AT110-e][066][NR16] NR ASN1 2 (Intel)”, Intel Corporation (rapporteur), RAN2#110-e
[2]	TS 38.331
[3]	R2-2106116, “Handling of candidateBeamRSListExt-v1610 set to “release” (option 1)”, MediaTek Inc./Intel Corporation, RAN2#114-e
[4]	R2-2106117, “Handling of candidateBeamRSListExt-v1610 set to “release” (option 2)”, MediaTek Inc./Intel Corporation, RAN2#114-e
[bookmark: _GoBack][5]	R2-2106118, “Handling of candidateBeamRSListExt-v1610 set to “release” (option 3)”, MediaTek Inc./Intel Corporation, RAN2#114-e

