[bookmark: OLE_LINK137][bookmark: OLE_LINK138][bookmark: _Toc20425633][bookmark: _Toc29321029][bookmark: _Toc36756613][bookmark: _Toc36836154][bookmark: _Toc36843131][bookmark: _Toc37067420][bookmark: _GoBack]3GPP TSG-RAN WG2 Meeting #111-e	R2-2006915
Online, 17-28 August 2020

Agenda Item:	6.1.1
Source: 	MediaTek Inc.
Title: 	Extension scenarios for ToAddMod lists

Document for:	Discussion, decision
[bookmark: OLE_LINK39][bookmark: OLE_LINK38][bookmark: OLE_LINK37]1	Introduction
RAN2#110-e held an email discussion (as summarised in [1]) on a cluster of ASN.1 issues, largely related to the extension of lists using a ToAddMod structure. The specific issues that arose in the Rel-16 ASN.1 were resolved, but there was a view in this discussion that it would be potentially valuable to have general guidelines for extending lists in the future. This document examines the general issues of extending ToAddMod lists and suggests some principles that could be adopted.
[bookmark: OLE_LINK41][bookmark: OLE_LINK24][bookmark: OLE_LINK17][bookmark: OLE_LINK16]2	Discussion
2.1	Cases of extension
The document in [1] identified several different cases that occur when a ToAddMod list needs to be extended:
	Case A: The max size of the list is increased, but no new fields are added to the list items
Case B: The max size of the list remains, but new fields are added to the list item
	B1: It is possible to add the new fields directly in the list item
	B2: It is not possible to add the fields directly in the list item
Case C: The max size of the list increases and new fields are added to the list items
	C1: It is possible to add the new fields directly in the list item
	C2: It is not possible to add the fields directly in the list item

2.1.1	Case A (size increase only)
Case A can be addressed in two ways: Either a new “short” list can be introduced to hold only the additional items (a “non-critical extension” approach), or a new “long” list can be introduced to hold all the items (and any existing entries in the original list must be explicitly released—a “critical extension” approach). There was a suggestion in the discussion of [1] that the critical extension approach is to be preferred. This seems to be directed towards forward compatibility, where new fields could be added for the list item in a later release.
2.1.2	Case B1 (field addition only, with extension marker)
Case B1 has a somewhat obvious resolution: The new fields are added to the list item structure (e.g. using EAGs) and the list structure itself does not need to change. However, this approach incurs overhead due to the cost of the EAGs, and this needs to be evaluated case by case. The alternative approach is a parallel list of a new structure containing the new fields (similar to case B2 below).
2.1.3	Case B2 (field addition only, without extension marker)
Case B2 requires that we define a new structure for the extended version of the list item. An example occurs in the PUCCH-Resource list in PUCCH-Config in Rel-16. The solution that has been used historically, and on which we settled for this example, is to have an extended structure for the new fields (only), and a parallel “ToAddModListExt-rXX” list with those structures:
PUCCH-Config ::= SEQUENCE {
 resourceSetToAddModList SEQUENCE (SIZE (1..maxNrofPUCCH-ResourceSets)) OF PUCCH-ResourceSet OPTIONAL, -- Need N
 resourceSetToReleaseList SEQUENCE (SIZE (1..maxNrofPUCCH-ResourceSets)) OF PUCCH-ResourceSetId OPTIONAL, -- Need N
 resourceToAddModList SEQUENCE (SIZE (1..maxNrofPUCCH-Resources)) OF PUCCH-Resource OPTIONAL, -- Need N
 resourceToReleaseList SEQUENCE (SIZE (1..maxNrofPUCCH-Resources)) OF PUCCH-ResourceId OPTIONAL, -- Need N
 (other fields omitted)
 ...,
 [[
 resourceToAddModListExt-r16 SEQUENCE (SIZE (1..maxNrofPUCCH-Resources)) OF PUCCH-ResourceExt-r16 OPTIONAL, -- Need N
	(other fields omitted)
]]
}

Note that no new ToRelease list is needed, since the range of the item ID (in this case PUCCH-ResourceId) does not change and the original size of the list is still valid. This case appears to be not controversial.
2.1.4	Case C1 (length extension and field addition, with extension marker)
Case C1 is a combination of case A and case B1: The length of the list can be extended with either the critical or non-critical extension mechanism, and the new subfields can be added in the original list item structure after the extension marker. If size is critical and the cost of EAGs would be a problem, this case can be treated as case C2 below. In Rel-16, we adopted the non-critical approach (and used the extension marker in the list item structure) for the fields controlResourceSetToAddModList and controlResourceSetToAddModList2-r16 in PDCCH-Config. A new ToRelease list is needed to allow for release of entries from both the old and new lists.
2.1.5	Case C2 (length extension and field addition, without extension marker)
Case C2 is the most complex case, in which the length is extended, the item structure is extended, and no extension marker is available to add the new fields. An example occurs in Rel-16 in the spatialRelationInfoToAddModList in PUCCH-Config, where PUCCH-SpatialRelationInfo needed to be replaced with a Rel-16 version (originally PUCCH-SpatialRelationInfo-r16). This was originally addressed with a critical extension (in TS 38.331-g00):
PUCCH-Config ::= SEQUENCE {
	(other fields omitted)
 spatialRelationInfoToAddModList SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos)) OF PUCCH-SpatialRelationInfo
 OPTIONAL, -- Need N
 spatialRelationInfoToReleaseList SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos)) OF PUCCH-SpatialRelationInfoId
 OPTIONAL, -- Need N
 pucch-PowerControl PUCCH-PowerControl OPTIONAL, -- Need M
 ...,
 [[
	(other fields omitted)
 spatialRelationInfoToAddModList-r16 PUCCH-SpatialRelationInfoList-r16 OPTIONAL, -- Need N
 spatialRelationInfoToReleaseList-r16 PUCCH-SpatialRelationInfoIdList-r16 OPTIONAL, -- Need N
	(other fields omitted)
]]
}

PUCCH-SpatialRelationInfoList-r16 ::= SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos-r16)) OF PUCCH-SpatialRelationInfo-r16

PUCCH-SpatialRelationInfoIdList-r16 ::= SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos-r16)) OF PUCCH-SpatialRelationInfoId-r16

After discussion, however, it was modified to use a combination of the non-critical extension mechanism and a parallel list of items with the new fields:
PUCCH-Config ::= SEQUENCE {
	(other fields omitted)
 spatialRelationInfoToAddModList SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos)) OF PUCCH-SpatialRelationInfo
 OPTIONAL, -- Need N
 spatialRelationInfoToReleaseList SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos)) OF PUCCH-SpatialRelationInfoId
 OPTIONAL, -- Need N
 pucch-PowerControl PUCCH-PowerControl OPTIONAL, -- Need M
 ...,
 [[
	(other fields omitted)
 spatialRelationInfoToAddModList2-r16 SEQUENCE (SIZE (1..maxNrofSpatialRelationInfosDiff-r16)) OF PUCCH-SpatialRelationInfo
OPTIONAL, -- Need N
 spatialRelationInfoToReleaseList2-r16 SEQUENCE (SIZE (1..maxNrofSpatialRelationInfosDiff-r16)) OF PUCCH-SpatialRelationInfoId
OPTIONAL, -- Need N
 spatialRelationInfoToAddModListExt-r16 SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos-r16)) OF PUCCH-SpatialRelationInfoExt-r16 OPTIONAL, -- Need N
 spatialRelationInfoToReleaseList-r16 PUCCH-SpatialRelationInfoIdList-r16 OPTIONAL, -- Need N
	(other fields omitted)
]]
}

PUCCH-SpatialRelationInfoList-r16 ::= SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos-r16)) OF PUCCH-SpatialRelationInfo-r16

PUCCH-SpatialRelationInfoIdList-r16 ::= SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos-r16)) OF PUCCH-SpatialRelationInfoId-r16

Here the spatialRelationInfoToAddModList2-r16 extends the spatialRelationInfoToAddModList with the same list item structure (PUCCH-SpatialRelationInfo), and the spatialRelationInfoToAddModListExt-r16 is a parallel list to the concatenation of the spatialRelationInfoToAddModList and the spatialRelationInfoToAddModList2-r16, using a new list item structure (PUCCH-SpatialRelationInfo) that contains only the new fields.
The explanation of this mechanism in the field description table is somewhat lengthy but accurate:
	spatialRelationInfoToAddModList, spatialRelationInfoToAddModList2 , spatialRelationInfoToAddModListExt
Configuration of the spatial relation between a reference RS and PUCCH. Reference RS can be SSB/CSI-RS/SRS. If the list has more than one element, MAC-CE selects a single element (see TS 38.321 [3], clause 5.18.8 and TS 38.213 [13], clause 9.2.2). The UE shall consider entries in spatialRelationInfoToAddModList and in spatialRelationInfoToAddModList2 as a single list, i.e. an entry created using spatialRelationInfoToAddModList can be modifed using spatialRelationInfoToAddModList2 (or deleted using spatialRelationInfoToReleaseList2) and vice-versa. If the network includes spatialRelationInfoToAddModListExt, it includes the same number of entries, and listed in the same order, as in the concatenation of spatialRelationInfoToAddModList and of spatialRelationInfoToAddModList2.

This model could be summarised as a combination of using the non-critical approach to case A and the parallel-list approach to case B2.
2.1.6	Summary of cases
For case A, there are two valid approaches to extending the list; this case is discussed further in the next section.
For case B1, there is an obvious approach using EAGs, but specific cases need to be considered from the standpoint of EAG overhead.
For case B2, there seems to be no real choice in how we approach it: Use a new structure (for the new fields only) and a parallel list.
Case C1 is just case A with the addition of an extension marker in the list item structure, and raises the same issue—by itself it can be solved with either a non-critical or a critical list extension, but a further extension in a future release may create confusion. Moreover, the overhead costs of an EAG may militate against using the extension marker, and if this occurs, this case would instead be treated as case C2. This case is discussed further in the next section.
Case C2 combines case A and case B2, and as shown above can be addressed by non-critically extending the original list (to extend the length) and implementing a parallel list of structures containing the new fields only.
Proposal 1: ToAddMod list extension practices should be aligned with the following table:
	Case
	Description
	Extension practice

	A
	List size extended, no change to elements
	Critical or non-critical extension (further discussed)

	B1
	Item extension only, with extension markers
	Use the extension marker if size is not critical, otherwise follow case B2

	B2
	Item extension only, without extension markers
	New structure for the new fields, parallel list of the new structure

	C1
	List size extended, item extended, with extension markers
	Critical or non-critical extension (further discussed) and use the extension marker if size is not critical; otherwise follow case C2

	C2
	List size extended, item extended, without extension markers
	Non-critical extension of the list without the new fields, and parallel list (parallel to the combination of the original and extension lists) of new structures for the new fields

2.2	Further discussion of cases A and C1
Given the discussion of the last section, it seems that the main remaining question is how to approach case A, and case C1 for cases where the extension marker can be used. There is a choice to be made between the “critical” and “non-critical” list extension mechanisms. As pointed out in the discussion of [1], case A in one release may be followed by another case in a future release. For example, a case A extension in Rel-17 using the non-critical mechanism, followed by a case B2 extension in Rel-18, results in a so-called parallel list that is not “parallel” to any single field:
ContainingStructure ::=	SEQUENCE {
	itemsToAddModList-r16	SEQUENCE (SIZE (1..origListSize)) OF Item-r16	OPTIONAL,	-- Need N
	itemsToReleaseList-r16	SEQUENCE (SIZE (1..origListSize)) OF ItemId-r16	OPTIONAL,	-- Need N
	...,
	[[
	-- Extends the Rel-16 list (case A, using non-critical mechanism)
	itemsToAddModList-r17	SEQUENCE (SIZE (1..numNewItems)) OF Item-r16		OPTIONAL,	-- Need N
]],
	[[
	-- Parallel to the concatenation of the Rel-16 and Rel-17 lists (case B2)
	itemsToAddModListExt-r18	SEQUENCE (SIZE (1..totalListSize)) OF ItemExt-r18	OPTIONAL	-- Need N
	itemsToReleaseList-r18	SEQUENCE (SIZE (1..totalListSize)) OF ItemId-r16	OPTIONAL	-- Need N
]]
}

Item-r16 ::=	SEQUENCE {		
	id				ItemId-r16,
	field1			INTEGER (0..3),
	field2			BIT STRING (SIZE(16))
}

ItemExt-r18 ::=	SEQUENCE {
	field3			ENUMERATED { value1, value2, value3 }
}

This is the same mechanism as used in case C2 for the spatialRelationInfoToAddModList, and it has the same caveat that the relationships between the lists must be clearly documented to avoid any implementation confusion.
The alternative would be to use the critical-extension mechanism for case A, followed by a fully parallel list for case B2 (which would imply that in general we should use the critical-extension mechanism for case A, to allow for future extensions in this manner). The only benefit seems to be to make the list parallelism more explicit. However, it results in a potentially ambiguous situation if the UE is first configured with the original list, then later with the critically-extended one: Is the network expected to release the contents of the original list explicitly, or does the UE interpret reception of the critically-extended list as implicitly indicating that the original list is no longer valid and the contents should be autonomously released? Either interpretation should be documented in the field description when the mechanism is used, adding some complexity without a clear gain. It seems preferable to use the non-critical mechanism.
Proposal 2: For case A, and for case C1 where the extension marker can be used, extend the ToAddMod list using the non-critical mechanism, with explicit documentation in the field descriptions of the relationship between the resulting lists.
Note that proposals 1 and 2 together result in guidelines that say the critical list extension mechanism should not be used. This principle may not need to be a hard rule, but we do not identify a situation where it would be preferable to use. On balance, we suggest that the critical list extension mechanism can be deprecated.
Proposal 3: Deprecate the critical list extension mechanism.
2.3	Documenting list relationships
As seen above, the combination of different extension cases in successive releases can lead to potentially confusing ASN.1 code (e.g. the “cross-release parallelism” of the example in section 2.2), hence the call for explicit documentation in proposal 2. It may be useful to establish a standard way of describing the list relationships for the critical and non-critical cases. For the parallel-list case, we already have the language “If listY is present, it shall contain the same number of entries, listed in the same order, as in listX”; the wording varies slightly (e.g. “and listed in the same order” in some cases) but the idiom is clearly recognisable.
For the critical case, if it is used, it seems appropriate to emulate the language we usually use when one field replaces another: “Network does not configure listX and listY simultaneously to a UE.” As noted above, it is also necessary to document what happens if the UE is configured with listX initially and then with listY. For this case, we tend to think that it is preferable for the network to release the contents of listX explicitly, to avoid any risk of divergent UE implementations, and it seems needed to capture this as a general principle.
Proposal 4: Document that if the critical list extension mechanism is used, when switching from the original to the extended list, the network explicitly releases the contents of the original list.
For the non-critical case, as quoted above, we used the terminology “The UE shall consider entries in listX and in listY as a single list”, with further explanation about the implication that an entry created with one list can be modified with the other (or deleted with the secondary ToRelease list). This is somewhat wordy to replicate every time the mechanism is used, and it would be more succinct to keep only the first part (“The UE shall consider entries in listX and in listY as a single list”) with further explanation in Annex A.4.
Proposal 5: For the non-critical list extension mechanism, document its use in the field description table with the idiom “The UE shall consider entries in listX and in listY as a single list”, and include in Annex A.4 a further explanation of the implications.
2.4	Field nomenclature
In the development of 38.331-g10, we seem to have converged on the following conventions for the non-critical and parallel extension mechanisms:
· When a list is non-critically extended, the new list has a “2” at the end of the name (before the -r16 suffix), e.g. spatialRelationInfoToAddModList2-r16
· Presumably this could be continued, e.g. if we need spatialRelationInfoToAddModList3-r17
· When a new structure is created to hold the new fields of a list item, the new structure has “Ext” at the end of the name (before the -r16 suffix), e.g. SearchSpaceExt-r16
· The corresponding parallel list similarly has “Ext” at the end, e.g. commonSearchSpaceListExt-r16

These conventions seem workable but are not captured anywhere; they should be reflected in Annex A.4.
Proposal 6: Introduce the field nomenclature conventions (“2” at the end of a non-critically extended list, “Ext” at the end of a new structure for the new fields and of the corresponding parallel list) into Annex A.4.
3	Conclusion
This document promulgated the following proposals:
Proposal 1: ToAddMod list extension practices should be aligned with the following table:
	Case
	Description
	Extension practice

	A
	List size extended, no change to elements
	Critical or non-critical extension (further discussed)

	B1
	Item extension only, with extension markers
	Use the extension marker if size is not critical, otherwise follow case B2

	B2
	Item extension only, without extension markers
	New structure for the new fields, parallel list of the new structure

	C1
	List size extended, item extended, with extension markers
	Critical or non-critical extension (further discussed) and use the extension marker if size is not critical; otherwise follow case C2

	C2
	List size extended, item extended, without extension markers
	Non-critical extension of the list without the new fields, and parallel list (parallel to the combination of the original and extension lists) of new structures for the new fields

Proposal 2: For case A, and for case C1 where the extension marker can be used, extend the ToAddMod list using the non-critical mechanism, with explicit documentation in the field descriptions of the relationship between the resulting lists.
Proposal 3: Deprecate the critical list extension mechanism.
Proposal 4: Document that if the critical list extension mechanism is used, when switching from the original to the extended list, the network explicitly releases the contents of the original list.
Proposal 5: For the non-critical list extension mechanism, document its use in the field description table with the idiom “The UE shall consider entries in listX and in listY as a single list”, and include in Annex A.4 a further explanation of the implications.
Proposal 6: Introduce the field nomenclature conventions (“2” at the end of a non-critically extended list, “Ext” at the end of a new structure for the new fields and of the corresponding parallel list) into Annex A.4.
A text proposal is provided.
4	References
[1]	R2-2006344, “Summary of [AT110-e][065][NR16] NR ASN1 1 (Huawei)”, Huawei/HiSilicon, RAN2#110-e

Error! No text of specified style in document.
13
Error! No text of specified style in document.

3GPP

5	Text proposal
A.4.2	Critical extension of messages and fields
The mechanisms to critically extend a message are defined in A.3.3. There are both "outer branch" and "inner branch" mechanisms available. The "outer branch" consists of a CHOICE having the name criticalExtensions, with two values, c1 and criticalExtensionsFuture. The criticalExtensionsFuture branch consists of an empty SEQUENCE, while the c1 branch contains the "inner branch" mechanism.
The "inner branch" structure is a CHOICE with values of the form "MessageName-rX-IEs" (e.g., "RRCConnectionReconfiguration-r8-IEs") or "spareX", with the spare values having type NULL. The "-rX-IEs" structures contain the complete structure of the message IEs for the appropriate release; i.e., the critical extension branch for the Rel-10 version of a message includes all Rel-8 and Rel-9 fields (that are not obviated in the later version), rather than containing only the additional Rel-10 fields.
The following guidelines may be used when deciding which mechanism to introduce for a particular message, i.e. only an 'outer branch', or an 'outer branch' in combination with an 'inner branch' including a certain number of spares:
-	For certain messages, e.g. initial uplink messages, messages transmitted on a broadcast channel, critical extension may not be applicable.
-	An outer branch may be sufficient for messages not including any fields.
-	The number of spares within inner branch should reflect the likelihood that the message will be critically extended in future releases (since each release with a critical extension for the message consumes one of the spare values). The estimation of the critical extension likelihood may be based on the number, size and changeability of the fields included in the message.
-	In messages where an inner branch extension mechanism is available, all spare values of the inner branch should be used before any critical extensions are added using the outer branch.
The following example illustrates the use of the critical extension mechanism by showing the ASN.1 of the original and of a later release
-- /example/ ASN1START -- Original release

RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcMessage-r8 RRCMessage-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

-- ASN1STOP

-- /example/ ASN1START -- Later release

RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcMessage-r8 RRCMessage-r8-IEs,
 rrcMessage-r10 RRCMessage-r10-IEs,
 rrcMessage-r11 RRCMessage-r11-IEs,
 rrcMessage-r14 RRCMessage-r14-IEs
 },
 later CHOICE {
 c2 CHOICE{
 rrcMessage-r16 RRCMessage-r16-IEs,
 spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
 }
}

-- ASN1STOP

It is important to note that critical extensions may also be used at the level of individual fields i.e. a field may be replaced by a critically extended version. When sending the extended version, the original version may also be included (e.g. original field is mandatory, E-UTRAN is unaware if UE supports the extended version). In such cases, a UE supporting both versions may be required to ignore the original field. The following example illustrates the use of the critical extension mechanism by showing the ASN.1 of the original and of a later release.
-- /example/ ASN1START -- Original release

RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcMessage-r8 RRCMessage-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

RRCMessage-rN-IEs ::= SEQUENCE {
 field1-rN ENUMERATED {
 value1, value2, value3, value4} OPTIONAL, -- Need N
 field2-rN InformationElement2-rN OPTIONAL, -- Need N
 nonCriticalExtension RRCConnectionReconfiguration-vMxy-IEs OPTIONAL
}

RRCConnectionReconfiguration-vMxy-IEs ::= SEQUENCE {
 field2-rM InformationElement2-rM OPTIONAL, -- Cond NoField2rN
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

	Conditional presence
	Explanation

	NoField2rN
	The field is optionally present, need N, if field2-rN is absent. Otherwise the field is absent

Finally, it is noted that a critical extension may be introduced in the same release as the one in which the original field was introduced e.g. to correct an essential ASN.1 error. In such cases a UE capability may be introduced, to assist the network in deciding whether or not to use the critical extension.
In the case of list fields (SEQUENCE OF types in ASN.1) using the ToAddMod/ToRelease construction, the use of critical extensions to increase the size of a list should be avoided; that is, the following example is not recommended:
-- /example/ ASN1START -- Deprecated example

ContainingStructure ::= SEQUENCE {
 originalToAddModList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementType								OPTIONAL,	-- Need N
	...
	[[
	replacementToAddModList-rN					SEQUENCE (SIZE (1..newMaxSize)) OF ListElementType									OPTIONAL		-- Need N
]]
}

-- ASN1STOP

Preferentially, a non-critical list extension mechanism should be used instead, such that only the new entries of the list are added as a new field. This approach is further discussed in section A.4.3.x.
If the critical extension mechanism for a list is used, it should be clarified in the field description that the two versions of the list are not configured together, and that the network should release the contents of the original version when configuring the replacement version.
A.4.3	Non-critical extension of messages
[…]
A.4.3.x	Non-critical extensions of lists with ToAddMod/ToRelease
When the length of a list using the ToAddMod/ToRelease construction is extended and/or fields are added to the list element structure, the list should be non-critically extended, i.e. by adding only the new entries to the list, coupled with the use of a parallel list structure to contain any fields added to the list elements. The following general principles apply:
–	When the length of the list is extended, this is reflected in a non-critical extension of the list, with a number added sequentially to the end of the field name (before any -rN suffix). A new ToRelease list is generally needed. The field description table should indicate that the UE considers the original list and the extension list as a single list; thus entries added with the original list can be modified by the extension list (or removed by the extension of the ToRelease list), or vice versa. The result is as shown in the following example:
-- /example/ ASN1START

ContainingStructure ::=					SEQUENCE {
 originalToAddModList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementType					OPTIONAL,	-- Need N
	originalToReleaseList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementId					OPTIONAL,	-- Need N
	...,
	[[
	-- Non-critical extension lists
	originalToAddModList2-rN					SEQUENCE (SIZE (1..numAdditionalElements-rN)) OF ListElementType		OPTIONAL,	-- Need N
	originalToReleaseList2-rN					SEQUENCE (SIZE (1..numAdditionalElements-rN)) OF ListElementId		OPTIONAL		-- Need N
]]
}

-- ASN1STOP

–	When fields are added to the list element structure, an extension marker should normally be used if available. If no extension marker is available or if overhead or other considerations prevent using the extension marker, an extension structure should be created for the new fields, with the suffix “Ext” added to the end of the field name (before any -rN suffix), and a parallel list introduced to hold the new structures, also with the “Ext” suffix. The field description table should indicate that the parallel list contains the same number of entries, and in the same order, as the original list. No new ToRelease list is typically needed (unless the list element ID type changes). The result is as shown in the following example:
-- /example/ ASN1START

ContainingStructure ::=					SEQUENCE {
 originalToAddModList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementType						OPTIONAL,	-- Need N
	originalToReleaseList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementId						OPTIONAL,	-- Need N
	...,
	[[
	-- Parallel list
	originalToAddModListExt-rN				SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementTypeExt-rN					OPTIONAL		-- Need N
]]
}

ListElementType ::=						SEQUENCE {
	elementId									ListElementId,
	field1										INTEGER (0..3),
	field2										ENUMERATED { value1, value2, value3 }
}

ListElementTypeExt-rN ::=					SEQUENCE {
	field3										BIT STRING (SIZE(8))
}

-- ASN1STOP

–	When the length of a list is extended and fields are added to the list element structure, an extension marker should normally be used for the added fields if available, and the list extended with the non-critical mechanism as described above. If no extension marker is available or if overhead or other considerations prevent using the extension marker, the list should be non-critically extended to hold the new entries, and a second list parallel to the concatenation of the original and extended lists should be introduced to hold the new entries (similar to the second example above). Finally, an extension structure should be created for the new fields (as in the second example above). The field description table should indicate that the parallel list contains the same number of entries, and in the same order, as the concatenation of the original list and the extension list. An extended ToRelease list is generally needed; in addition, if the element ID type changes, a second, parallel ToRelease list would be needed. The result is as shown in the following example:
-- /example/ ASN1START

ContainingStructure ::=					SEQUENCE {
 originalToAddModList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementType						OPTIONAL,	-- Need N
	originalToReleaseList						SEQUENCE (SIZE (1..originalMaxSize)) OF ListElementId						OPTIONAL,	-- Need N
	...,
	[[
	-- Non-critical extension lists
	originalToAddModList2-rN					SEQUENCE (SIZE (1..numAdditionalElements-rN)) OF ListElementType			OPTIONAL,	-- Need N
	originalToReleaseList2-rN					SEQUENCE (SIZE (1..numAdditionalElements-rN)) OF ListElementId			OPTIONAL,	-- Need N
	-- Parallel lists with newMaxSize = originalMaxSize + numAdditionalElements
	originalToAddModListExt-rN				SEQUENCE (SIZE (1..newMaxSize-rN)) OF ListElementTypeExt-rN						OPTIONAL,	-- Need N
	originalToReleaseListExt-rN				SEQUENCE (SIZE (1..newMaxSize-rN)) OF ListElementId-rN							OPTIONAL		-- Need N
]]
}

ListElementType ::=						SEQUENCE {
	elementId									ListElementId,
	field1										INTEGER (0..3),
	field2										ENUMERATED { value1, value2, value3 }
}

ListElementTypeExt-rN ::=					SEQUENCE {
	elementId-rN								ListElementId-rN,
	field3-rN									BIT STRING (SIZE(8))
}

-- ASN1STOP

