Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _GoBack]3GPP TSG-RAN WG2 Meeting #109bis-e	Tdoc R2-2003355
Electronic meeting, 20th – 30th April 2020	

Agenda Item:	7.2.3
Source:	Ericsson, Huawei, HiSilicon
Title:	Moving UL grant handling from MAC to RRC for PUR
Document for:	Discussion, Decision
1	Introduction
The following working assumption on PUR was made during RAN2#109-e:
	Working assumptions:
(Can be used as baseline for CR and revisit if there is a problem):
· RRC provides PUR configuration to MAC once and MAC calculates the PUR grant for each PUR occasion.
· “m” counter is maintained in MAC. When the counter value reaches the configured max value, MAC sends indication to RRC to release PUR configuration.

Based on e.g. email discussion [Post109e#46], there are several issues which need to be resolved if MAC calculates the timing of all PUR grants and results in functionality which is atypical comparing to current MAC modeling.
In this contribution we bring up these issues and propose to revert the working assumption, i.e. to move the grant handling to RRC layer. Both options, handling in RRC or MAC will require changes in specifications (part of which have already been agreed and captured) but we strongly think the modeling principles favour calculation of future PUR occasions in RRC and not in MAC layer.
[bookmark: _Ref178064866]2	Discussion
2.1	Current MAC modeling
Based on the current status of MAC specification and the discussion e.g. in [Post109e#46], it seems the MAC specification needs to handle functionalities which are not typical to MAC, for example MAC would need to understand the RRC state for correct handling of e.g. counting of the skips 'm', and in general retain information in MAC layer for long periods while the UE would stay in RRC_IDLE sleeping and saving power. This is not the original intention of how MAC should work and as a general principle, functionality at MAC layer should be minimized while the UE is sleeping for long periods until MAC entity is again configured and random access triggered (monitoring for SC-PtM is one exception).
Related to idle mode behaviour, MAC reset is performed during RRC state transitions to suspend/idle and when e.g. receiving RRCEarlyDataComplete etc. – however, in the PUR case the modeling principles are broken as MAC entity would not really be reset but it should continue operation while in RRC_IDLE. When adding more exceptions, it becomes unclear what is actually reset. This means the concept of the MAC reset is not clear when reading the specifications and in general future additions and enhancements become more difficult to work with. We have one related example of this already, as currently CP-PUR would not work as intended when MAC configuration is released, see Section 2.4 below.
One exception to MAC reset has been agreed and is captured in TS 36.321 [3] on handling of pur-TimeAlignmentTimer.
In general, we think we should try to prevent mixing up functionality between layers or to break the functional split between MAC and RRC layer even if it is possible to make things work. We should stick to the existing structure and not try to remove the structuring, or one can question why we have such layering to start with.
[bookmark: _Toc37401747]The working assumption on PUR grant handling breaks current MAC modeling and depends on functionality which is not specified or need modeling changes, e.g. on MAC knowledge of RRC state or procedure and calls for MAC reset.
2.2	Handling of UL grants for PUR
We have a working assumption on that MAC layer calculates the PUR grant for each PUR occasion based on the PUR configuration provided by RRC, but given the current discussion, it seems companies agree that also RRC layer should have understanding of when the PUR occasions occur in time. Therefore, as was proposed by some companies already during earlier discussions, it would be more straightforward to have the calculation of timing, and the related parameters (pur-StartTime, pur-Periodicity) to be stored only in RRC layer. Otherwise, either both MAC and RRC layer need to have the same information or rely on interaction between the layers. Such interactions or storing in both layers unnecessary, as the calculation of UL grant timing could be done in RRC layer instead.
[bookmark: _Toc37401748]RRC layer will in any case need information on timing of upcoming PUR UL grants – there is no clear benefit of MAC layer calculating the timing.

An additional benefit of calculation of UL grant timing in RRC is that there would be no need to define additional type of grant in MAC: Currently we have at least PUR grant, preallocated UL grant, configured UL grant (SPS), and a "normal" dynamic grant. This is unnecessarily confusing as there is possibility to specify a cleaner alternative.
In conclusion, many of the principles of how the functional split between MAC and RRC is modeled are broken with PUR. It would be better to leave as much functionality to RRC layer, as the PUR feature is in any case controlled by RRC and upper layers.
2.3	Alternative solution to PUR grant handling
If calculates the exact times of PUR occasions, it can provide the information of the upcoming UL grant to MAC when it applies the PHY configuration to lower layers. This way, MAC layer would not keep the timing or grant configuration for extended periods during RRC_IDLE but would more like when RRC layer initiates a connection establishment and configures MAC layer etc.
For example, in clause 5.3.3.3a in TS 36.331 it can be specified that RRC layer provides MAC layer with the timing information:
	2>	if the UE is initiating UP-EDT for mobile originated calls in accordance with conditions in 5.3.3.1b:
3>	configure the lower layers to use EDT;
2>	else if the UE is initiating UP transmission using PUR:
3>	apply the physical channel configuration in accordance with the stored pur-Config;
3> configure the lower layers to transmit using the resources for the next PUR occasion;

And similarly in clause 5.3.3.3b for RRCEarlyDataRequest. The intention is to configure lower layers with UL grant for the next PUR occasion.
We strongly think the calculation would be more reasonable in RRC layer – additionally it would be natural to handle pur-NumOccasions in RRC layer in this case (which is one of the open issues in the email discussion) and as discussed, number of further simplifications could be done in MAC layer, like removing the PUR occasion calculation details to better adhere to the modeling of functional split between MAC and RRC layers.
[bookmark: _Toc37401749]Revert the working assumption on UL grant calculation in MAC layer and move this functionality to RRC layer.

Moreover, we would prefer to handle the skipping of UL grants, i.e. 'm' counting, also in RRC layer in this case, as it would likely result in less interaction between MAC and RRC..
[bookmark: _Toc37401750]If Proposal 1 is agreed, counting of skips 'm' is also handled in RRC.

If above proposals are agreed, it would be possible to configure MAC layer only with the PUR time alignment timer and possibly PUR C-RNTI (unless latter would be provided together with the grant). We think this would result in cleaner modeling and better following the current structure between layers.
2.4	MAC configuration reset in CP solution
In the current specifications, when UE receives RRCEarlyDataComplete message, MAC would be reset and MAC configuration would be completely removed. This means MAC would not be configured correctly for the possible next PUR occasion:
	[bookmark: _Toc37081861][bookmark: _Toc36938882][bookmark: _Toc36846229][bookmark: _Toc36809865][bookmark: _Toc36566456][bookmark: _Toc29343207][bookmark: _Toc29342068][bookmark: _Toc20486776]5.3.3.4b	Reception of the RRCEarlyDataComplete by the UE
The UE shall:
1>	indicate to upper layers that the RRC connection has been established;
1>	if stored, discard the cell reselection priority information provided by the idleModeMobilityControlInfo or inherited from another RAT;
1>	if stored, discard the dedicated offset provided by the redirectedCarrierOffsetDedicated;
1>	stop timer T300;
1>	stop timer T302, if running;
1>	stop timer T303, if running;
1>	stop timer T305, if running;
1>	stop timer T306, if running;
1>	stop timer T308, if running;
1>	perform the actions as specified in 5.3.3.7;
1>	stop timer T320, if running;
1>	stop timer T322, if running;
1>	forward the dedicatedInfoNAS, if received, to the upper layers;
1>	reset MAC and release the MAC configuration;
1>	if the RRCEarlyDataComplete message includes redirectedCarrierInfo indicating redirection to geran; and

Depending on the outcome of earlier proposals, either an exception needs to be made for PUR case or, if no persistent configuration would be stored at MAC following the layering principles, there would be no issue.
[bookmark: _Toc37401751]If persistent PUR configuration is stored at MAC, make an exception for MAC configuration release when receiving RRCEarlyDataComplete.
Conclusion
In the previous sections we made the following observations:
Observation 1	The working assumption on PUR grant handling breaks current MAC modeling and depends on functionality which is not specified or need modeling changes, e.g. on MAC knowledge of RRC state or procedure and calls for MAC reset.
Observation 2	RRC layer will in any case need information on timing of upcoming PUR UL grants – there is no clear benefit of MAC layer calculating the timing.

Based on the discussion in the previous sections we propose the following:
Proposal 1	Revert the working assumption on UL grant calculation in MAC layer and move this functionality to RRC layer.
Proposal 2	If Proposal 1 is agreed, counting of skips 'm' is also handled in RRC.
Proposal 3	If persistent PUR configuration is stored at MAC, make an exception for MAC configuration release when receiving RRCEarlyDataComplete.
[bookmark: _In-sequence_SDU_delivery]
References
R2-2001872, MAC CR 1465 rev 1, "Introduction of further enhancements for eMTC", RAN2#109-e, Mar 2020
R2-2001787, MAC CR 1466 rev 1, "Introduction of additional enhancements for NB-IoT", RAN2#109-e, Mar 2020
[bookmark: _Ref37330864]TS 36.321, v16.0.0, April 2020.
	4/4	
