[bookmark: OLE_LINK137][bookmark: OLE_LINK138][bookmark: _GoBack]3GPP TSG-RAN WG2 Meeting #107	R2-1909052
Prague, Czech Republic, 26-30 August 2019

Agenda Item:	10.4.1.3.11
Source: 	MediaTek Inc.
Title: 	ASN.1 handling of variable-size lists without ToAddMod/ToRelease structures

Document for:	Discussion and decision
[bookmark: OLE_LINK39][bookmark: OLE_LINK38][bookmark: OLE_LINK37]Introduction
After RAN2#106, there was a short email discussion on the handling of the field commonSearchSpaceList in ASN.1, resulting in the submission of [1] to the plenary. The underlying issue is that the list has variable size and is provided without ToAddMod/ToRelease constructs that better define how to handle delta signalling of fields contained in the list elements; thus when the network sends an update to the list, it was considered not absolutely clear what the UE behaviour should be wrt the list size and the contained fields within the list elements.
For this specific field, the conclusion was to have the network handle the situation by always updating the list as if all entries were new. However, the general handling of such fields in other places in the ASN.1 was not discussed extensively due to limited time. This paper considers the general issue.
[bookmark: OLE_LINK41][bookmark: OLE_LINK24][bookmark: OLE_LINK17][bookmark: OLE_LINK16]Discussion
Background
In the case of commonSearchSpaceList, the need codes of the list elements helped to produce an unambiguous behaviour. When a SearchSpace is “newly defined” (i.e. configured for the first time for a UE via dedicated RRC signalling), all fields in it are either mandatory or Need R; accordingly, it was possible to declare that the structure is always treated as “newly defined”, with the result that all fields that are not Need R will be populated by the network. There is no special requirement on the UE to handle this as an exceptional case; as long as the UE respects the field presence and need codes, the structure will be correctly updated.
When a list entry contains Need M fields, there is an ambiguity of behaviour. If we consider a list of structures that contain a Need M field, the following sequence of events creates an ambiguity in how to handle the concerned field:
1. The network first configures an initial version of the list, with two list entries: A and B. Both entries include the Need M field.
2. The network sends an update to the list, this time with a list of three entries:
a. First entry is the same as the existing entry A, so we will denote it as “A”.
b. Second entry (“B2”) is almost the same as the existing entry B, but with the Need M field omitted.
c. Third entry (“C”) is entirely new, with a different value for the Need M field.
It is not specified how the UE should treat the updated list (with entries A, B2 and C) in relation to the initial list (with entries A and B): Are the fields inside B2 “replaced” or can there be “delta signalling” for those? Does the updated list fully replace the previous list? Are the field conditions for each entry treated the same as if the whole list was configured for the first time? What is the correct interpretation?
· One interpretation could be that the updated list simply replaces the first list; that is, the Need codes and field conditions of the sub-fields corresponding to the “initial set-up” apply. In this case, the result will be that the entry A will be maintained unchanged, a new entry C is created, and entry B2 will have no value in the Need M field since by definition, field with Need M is considered as not configured if not provided and the entry B2 is considered to be “newly configured”.
· Another interpretation could be that the UE updates the entries in their listed order based also on the Need code for each field and if the number of entries in the updated list is fewer, the UE deletes any “additional” entries that are not present in the updated list; that is, entry A remains unchanged and new entry C is created. However, for entry B2, the UE respects the Need M code of the field(s) and maintains the current value of the Need M field according to the entry B (since the entry was present before, delta signalling would apply).
Consider another example, with the updated list having only one entry (“A2”) with the Need M field omitted. With the first interpretation, there would be only one entry in the list without a value for the Need M field (i.e. exactly the contents of A2). With the second interpretation, the first entry will be updated and the value for Need M field will be retained and the second entry will be deleted (i.e. the first entry will be a mix of A and A2).
That is, both interpretations will result in the same number of entries but with potentially different values for the field(s). This basic ambiguity of behaviour needs to be resolved.
We focus first on the preferred behaviour for new fields to be introduced in the future, i.e. on what approach should ideally have been used from the beginning; how to handle the already-existing fields in Rel-15, for which there is a backward compatibility concern, is addressed in section 2.3 below.
Handling of future fields
As a general principle, lists that are intended to support delta signalling should use the ToAddMod/ToRelease idiom. In particular, this implies that Need M should not be used in the context of a list without ToAddMod/ToRelease. This is the root of the ambiguity described in the examples above; there is no ambiguity of behaviour for other need codes. Need R fields will anyway be deleted if omitted, Need N fields are one-shot, and Need S fields will follow the specification text on absence. (Conditions may include need codes or even be a mix of need codes, so any Need M behaviour in those would need to be checked as well.)
Proposal 1: Capture in the ASN.1 guidelines that Need M should be avoided for IEs that are included in lists without a ToAddMod/ToRelease structure.
Note that this restriction could theoretically become a problem in future if we have an IE that is first used in some other context, where Need M makes sense, and it later needs to be invoked in a list without ToAddMod/ToRelease. This should be quite an exceptional situation, since the premise of Need M is to support delta signalling, which would normally indicate the ToAddMod/ToRelease construction.
This situation, if it does arise, could be addressed in several ways:
· One way is by having the UE respect the need codes and apply delta signalling, but we understand after offline discussion that this is unacceptable to multiple companies; thus we do not consider it further.
· A second approach would address the issue by having a convention for changing the need code, similar to the convention already defined for system information (“Any field with Need M or Need N in system information shall be interpreted as Need R”), but this approach invites confusion for the UE implementation and we should try to avoid having fields with different need codes in different contexts. In particular, this approach creates complexity for implementations; for example, the code to handle a particular IE now needs to have different branches depending on the context in which the IE was sent.
· A third alternative would be to keep absolutely to the principle of proposal 1, even if it means creating a new version of the IE with different need codes. However, this alternative has the potential to lead to duplication of IEs, which can cause maintenance problems (e.g. if the original IE needs to be extended, the “shadow” version of the IE must be extended as well).
· As a fourth approach, if Need M must be used in a list without ToAddMod/ToRelease, it would be possible to restrict how the network uses it, to avoid building in an assumption about the UE implementation. This could be done by requiring that the Need M field is always included in any update of the list; it disables delta signalling (which should be correct—if we intended delta signalling for a field, we would have used ToAddMod/ToRelease) but also does not assume that the UE will delete a field if absent (i.e. no UE requirement to treat Need M as Need R is created). The cost is hanging configurations, since there is no way to delete the Need M fields—deletion requires a release-and-add operation for the configuration that contains the list. After some analysis and discussion, we understand that this is the only practical way to allow the use of Need M without introducing a new UE requirement (e.g. as in the second approach above).
If the fourth approach listed above is adopted, it means that when an update to a list without ToAddMod/ToRelease constructs is signalled, the network needs to provide values for all the fields that it expects to be populated—in particular, all the Need M fields must be signalled. In effect the list is being newly set up from scratch.
Observation 1: To update a list without ToAddMod/ToRelease constructs without introducing a new UE requirement, the network needs to provide the fields as if the list were being configured for the first time (i.e. all fields that should have network-signalled values, and in particular all Need M fields, need to be configured).
In the case of commonSearchSpaceList, this “new setup” behaviour was explicitly documented in the specification, so that the Need M codes would never be invoked. It may be useful to capture this as a general principle in the ASN.1 coding practices.
Proposal 2: Capture in the ASN.1 coding practices that when an update is signalled to a list without ToAddMod/ToRelease, any Need M fields (in case there are any, in contravention of proposal 1) must be included in the message.
Observation 2: As a consequence of proposal 2, releasing a Need M field in a list without ToAddMod/ToRelease requires a release-and-add operation of the configuration that contains the list.
Finally, the handling of the list size needs to be considered. If the stored version of the list has three entries, and the network signals an update with two entries, should the resulting list have two entries or three? It is important to have aligned behaviour between the network and UE in this respect, because if the network attempts to shorten the list and the UE leaves the trailing entries as “hanging” configurations, the UE may subsequently attempt to use an entry that the network thinks was released. Similar to what is proposed below for legacy fields (proposal 4), our understanding is that the new size overrides the old; that is, in the example given, the new list should have two entries and the UE releases the third entry. This behaviour was discussed previously in connection with commonSearchSpaceList and seems to be a consensus behaviour for the UE.
Proposal 3: For fields introduced in Rel-16 and forward, when an update to a variable-size list without a ToAddMod/ToRelease construct is signalled, the UE at least updates the size of the list to match the newly signalled version.
Existing fields in Rel-15 RRC
2.3.1	General principles and affected fields
For existing variable-size lists, the behaviour with respect to list size also needs to be clarified as discussed above, particularly for the case that the list is shortened. There are currently many lists in the RRC with variable size, and it seems necessary to have a clear behaviour for changing their lengths. Adding to the fact that typically such lists are using Need M for the field that defines the list, it is easy to wonder whether the need code refers to the presence of the list itself (and therefore any new “value” for the list, even if it has different size, replaces the previous) or the presence of the list entries (in which case UE could retain the list entries that were previously signalled when updating the list)?
As discussed above for new fields, it seems to have been accepted in the email discussion that the correct behaviour is to use the new list length; that is, the newly signalled list length overrides the stored length. Although the specification does not give an unambiguous behaviour, our understanding after the email discussion is that companies can accept applying this principle also to existing fields.
Proposal 4: For the already existing fields in the Rel-15 RRC, when an update to a variable-size list without a ToAddMod/ToRelease construct is signalled, the UE at least updates the size of the list to match the newly signalled version.
The behaviour for entries in the list that are updated is less clear and we discuss this below. It is important not to introduce non-backward-compatible requirements on the UE, but the door could be open to requirements on the network behaviour, like the one already adopted for the commonSearchSpaceList to treat the list elements as “always new”. (This is also a network requirement in the sense that the conditional codes that are applied for initial setup require the network to include the concerned fields.) Fields need to be evaluated on a case-by-case basis to determine if such a requirement is useful. However, any such requirement should be backward compatible with different possible UE implementations.
Proposal 5: For backward compatibility for the already existing fields in the Rel-15 RRC, there is no requirement that a UE implementation has to treat an update of a variable-size list as “always new”. Nor is there a UE requirement to maintain the values for Need M fields.
There are many examples of variable-size lists in the RRC, but in most of them the members are either scalars (e.g. ra-OccasionList in BFR-CSIRS-Resource) or structures with no Need M fields (e.g. the dynamic branch in CG-UCI-OnPUSCH, where all fields are Need S). These cases are not really ambiguous, since the only possible behaviour is for the entries to be replaced, provided proposal 4 is agreeable. (Even in the absence of proposal 4, where an existing entry is reconfigured, the behaviour seems unambiguous.)
In our analysis of the existing RRC spec, we have identified only the following cases of variable-size lists whose entries contain Need M fields:
· associatedReportConfigInfoList in CSI-AperiodicTriggerStateList (already discussed in offline discussion #026 at RAN2#106)
· quantityConfigNR-List in QuantityConfig
· srs-TPC-PDCCH-Group (the typeA branch) and srs-CC-SetIndexList in SRS-CarrierSwitching
2.3.2	associatedReportConfigInfoList
In the case of the associatedReportConfigInfoList, the immediate issue was already resolved at RAN2#106 by determining that the list can only be modified by release and add. This is somewhat awkward since it requires two separate RRC messages, and it may be worth revisiting to see if the restriction can be relaxed.
In our understanding, there are two problems to be considered. One is the hanging configuration issue: There is no way for the network to release the Need M fields of a list element (csi-IM-ResourcesForInterference and nzp-CSI-RS-ResourcesForInterference) once they have been configured. The second is the general ambiguity of behaviour described above for the case that the Need M fields are omitted. However, the message format poses no obstacle to reconfiguring the values (both of which are scalars). It would not require any ASN.1 change, and it would be compatible with both plausible UE implementations, to declare that the values can be reconfigured, and that only the release of the resources for interference measurement requires a release-and-add operation with two RRC messages.
Proposal 6: Allow the associatedReportConfigInfoList to be reconfigured by a full replacement (i.e. the network includes all the Need M fields), without a release and add.
Observation 3: As a consequence of proposal 6, there would be no requirement on the UE to release the Need M fields of associatedReportConfigInfoList if they are not sent by the network (i.e. proposal 6 is compatible with all UE implementations).
If proposal 6 is adopted, it would be incumbent upon the network to send the full replacement list; in accordance with proposal 5 above, there is no new requirement on the UE. This would be similar to the solution adopted for commonSearchSpaceList.
2.3.3	quantityConfigNR-List
In the case of QuantityConfig, the quantityConfigNR-List is variable-size, and each list entry is as follows:
QuantityConfigNR::= SEQUENCE {
 quantityConfigCell QuantityConfigRS,
 quantityConfigRS-Index QuantityConfigRS OPTIONAL -- Need M
}

In each list entry, the filter configurations per RS index are subject to delta signalling. The only issue is that there is no release mechanism, i.e. no way for a network to convert a list entry from one with quantityConfigRS-Index to one without. However, there seems to be no critical need to release this information; a hanging quantityConfigRS-Index only causes a small amount of unnecessary processing in the UE of beam-related measurements. Accordingly, it seems there is no need to codify any special behaviour for updating this list.
Proposal 7: No specification change is made in Rel-15 for handling of the quantityConfigNR-List.
2.3.4	srs-TPC-PDCCH-Group
In SRS-CarrierSwitching, the typeA branch of the CHOICE type srs-TPC-PDCCH-Group provides a list of SRS-TPC-PDCCH-Config types, each of which comprises one optional (Need M) field—which itself is a variable-size list containing (scalar) Need M fields:
SRS-CarrierSwitching ::= SEQUENCE {
 srs-SwitchFromServCellIndex INTEGER (0..31) OPTIONAL, -- Need M
 srs-SwitchFromCarrier ENUMERATED {sUL, nUL},
 srs-TPC-PDCCH-Group CHOICE {
 typeA SEQUENCE (SIZE (1..32)) OF SRS-TPC-PDCCH-Config,
 typeB SRS-TPC-PDCCH-Config
 } OPTIONAL, -- Need M
 monitoringCells SEQUENCE (SIZE (1..maxNrofServingCells)) OF ServCellIndex OPTIONAL, -- Need M
 ...
}

SRS-TPC-PDCCH-Config ::= SEQUENCE {
 srs-CC-SetIndexlist SEQUENCE (SIZE(1..4)) OF SRS-CC-SetIndex OPTIONAL -- Need M
}

SRS-CC-SetIndex ::= SEQUENCE {
 cc-SetIndex INTEGER (0..3) OPTIONAL, -- Need M
 cc-IndexInOneCC-Set INTEGER (0..7) OPTIONAL -- Need M
}

Given the need code, the network cannot directly reconfigure an entry in the typeA list from a configuration with an srs-CC-SetIndexList to one without. However, it appears from RAN1 specifications that this would not be a valid configuration. Based on TS 38.212 section 7.3.1.3.4 and TS 38.213 section 11.4, we understand that these fields are actually mandatory to be configured for the type A DCI configuration, and not used for type B; thus no release mechanism is needed. (It also appears that the typeB branch could have been of type NULL, but since all the fields in the structure are optional, the network can just omit them.)
In hindsight, the fields in the SRS-CarrierSwitching could be clarified (without sacrificing backward compatibility) by documenting the expectations on when they will be set. This was actually considered in the ASN.1 review (issue H359, [2]), but the related offline discussion concluded to simplify the code by using Need M everywhere ([3]). This discussion took place before the agreement of RAN2#106 to have the idiom “Network always configures the UE with a value for this field”, and under the assumption that Need M was valid in the list structure. In hindsight we believe this was not the optimal solution, and it would be better to make the fields required for typeA. This could be achieved either with a condition or with text in the field description table.
Proposal 8: Document in the field descriptions that cc-SetIndex and cc-IndexInOneCC-Set are always included when the srs-TPC-PDCCH-Group is set to typeA, and not used for typeB.
2.3.5	Overall assessment of the legacy handling
Considering the analysis above, it seems that in general the behaviour described in proposals 2 and 3 is also applicable to the legacy fields. Thus we submit that proposals 1-4 can be adopted in the ASN.1 guidelines already from Rel-15, with the addition of proposals 6 and 8 to clarify the behaviour for specific fields. (Proposal 5 is a working principle and proposal 7 has no spec impact.)
Note that there is some tension between proposals 2 and 8, in that proposal 8 suggests the Need M fields should not be included for the typeB branch, while proposal 2 says the Need M fields would need to be included in any update. This could be resolved by several means:
· Clarify in the description of typeB that the fields are omitted as an intentional exception to the general guideline;
· Allow the network to include the Need M fields for typeB as suggested by the guidelines, with the understanding that the UE ignores them as being not required;
· Fine-tune the wording of proposal 2 to indicate that only Need M fields that were previously configured in the UE need to be signalled in the update.
Proposal 9: Consider whether and how to modify the description of the fields in srs-TPC-PDCCH-Group and/or the ASN.1 guidelines to clarify that the optional fields under typeB can be omitted.
Conclusion
This document promulgated the following proposals:
Proposal 1: Capture in the ASN.1 guidelines that Need M should be avoided for IEs that are included in lists without a ToAddMod/ToRelease structure.
Proposal 2: Capture in the ASN.1 coding practices that when an update is signalled to a list without ToAddMod/ToRelease, any Need M fields (in case there are any, in contravention of proposal 1) must be included in the message.
Proposal 3: For fields introduced in Rel-16 and forward, when an update to a variable-size list without a ToAddMod/ToRelease construct is signalled, the UE at least updates the size of the list to match the newly signalled version.
Proposal 4: For the already existing fields in the Rel-15 RRC, when an update to a variable-size list without a ToAddMod/ToRelease construct is signalled, the UE at least updates the size of the list to match the newly signalled version.
Proposal 5: For backward compatibility for the already existing fields in the Rel-15 RRC, there is no requirement that a UE implementation has to treat an update of a variable-size list as “always new”. Nor is there a UE requirement to maintain the values for Need M fields.
Proposal 6: Allow the associatedReportConfigInfoList to be reconfigured by a full replacement (i.e. the network includes all the Need M fields), without a release and add.
Proposal 7: No specification change is made in Rel-15 for handling of the quantityConfigNR-List.
Proposal 8: Document in the field descriptions that cc-SetIndex and cc-IndexInOneCC-Set are mandatory to include when the srs-TPC-PDCCH-Group is set to typeA, and not used for typeB.
Proposal 9: Consider whether and how to modify the description of the fields in srs-TPC-PDCCH-Group and/or the ASN.1 guidelines to clarify that the optional fields under typeB can be omitted.
References
[1]	RP-191436, “Clarification to commonSearchSpaceList in PDCCH-ConfigCommon”, Nokia/Nokia Shanghai Bell, RAN#84
[2]	R2-1812696, “Correction on SRS-Config H358, H359, H360”, Huawei/HiSilicon, RAN2#103
[3]	R2-1813302, “Correction on SRS-Config H359”, Huawei/HiSilicon, RAN2#103
7

