3GPP TSG-RAN WG2 Meeting #107 R2-1908825
Prague, Czech Republic, 26th - 30th August 2019

Source:	CATT
Title:	Discussion on Ethernet Header Compression
Agenda Item:	11.7.2.3
Document for:	Discussion and Decision
[bookmark: Title]Introduction
In RAN2#106 meeting, RAN2 discussed several issues related to Ethernet header compression, and the following agreements were reached:
	Ethernet Header Compression (EHC) is configured per DRB, separately for UL and DL.
Use context ID concept such that compressor and decompressor associates a context ID with Ethernet header contents.
Compression is done with following principle:
- For Ethernet flow resulting in creation of new context, compressor transmits at least one packet with full header and context id (to establish context in decompressor).
- After above, compressor starts transmits compressed packets. FFS if multiple transmissions and/or feedback is needed.
EHC header format is designed to include following mandatory field: context ID, Indication of header format (i.e. full header and compressed header).

In this contribution, we will further discuss the remaining open issues for Ethernet Header Compression:
· Issue 1: Which Ethernet frames are considered for compression?
· Issue 2: Which fields are selected for compression?
· Issue 3: How to configure compression context?
· Issue 4: How many states should Ethernet compressor have?
· Issue 5: Whether the feedback is necessary?
· Issue 6: Whether the padding needs to be removed?
A detailed discussion on these questions is given below.
Discussion
0. Selected Ethernet frames for compression
Regarding the various frame types:
It is common understanding that we should focus on Ethernet II frame (with Ethertype field, i.e. value >= 1536) or IEEE 802.3 frame (with Length field, i.e. value <= 1500). Other types (802.2 LLC/SNAP) are completely marginal and should be left out of the scope of the WI. And this is also the conclusion of the TR [1].
Now, in our view, even the IEEE 802.3 frame (with Length field instead of Ethertype) is very old and very unlikely to be seen in a “factory of the future”. Note also that TSN heavily relies on IEEE 802.1Qbv (time-aware scheduling) relying on VLAN classification of flows, hence on 802.1Q protocol that necessarily requires an Ethertype field to be set to 0x8100 (the first two octets (=TPID) of a VLAN tag), hence requires an Ethernet II frame. And the Ethertype will always be constant for a given flow. Hence if we rule out IEEE 802.3 frames, we don’t need to bother about compressed fields updates, as e.g. suggested in [2].
[bookmark: _Toc7449054][bookmark: _Toc16693704][bookmark: _Ref16752788]Proposal 1: The PDCP header compression only focuses on Ethernet II frame (with Ethertype field, i.e. value >= 1536).
Anyways, the header compressor should have exceptions handling for skipping compression of unexpected formats. Ethernet header with length field should be treated as such exceptions. In short, only the Ethernet II frame should be considered for compression. Others should be treated as exceptions and not compressed.
[bookmark: _Toc7449055][bookmark: _Toc16693705][bookmark: _Ref16752819]Proposal 2: The PDCP header compression supports exceptions handling for skipping compression of unexpected formats.
0. Selected fields for compression
If proposal 1 is agreed, for a given Ethernet flow selected for compression, the source and destination addresses, the Q-Tags (if any) and the Ethertype fields are constant. Hence we should confirm the recommendation from TR 38.825 [1] that they should be trimmed in their entirety from the compressed packet.
[bookmark: _Ref16752857]Proposal 3: The following fields are compressed: destination and source addresses, Q-Tags (and sub-fields), Ethertype.
0. Compression context configuration
It has been agreed in last meeting that context ID concept can be used for compression/decompression. Besides, from the above discussion and proposals, the full header for each Ethernet flow considered for compression is exactly the same. One possible procedure is therefore depicted as follows:
 Step 1, the compressor sends the full header and context ID to the decompressor, until the decompressor receives it successfully.
 Step 2, the decompressor stores the full header and the context ID as compression context.
 Step 3, the compressor sends the compressed packets containing the context ID to the decompressor.
 Step 4, the decompressor performs the decompression on the received packets based on the context ID and the stored compression context.
In this procedure both the compressor and the decompressor maintain a table which consists of the context ID and compression context.
[bookmark: _Ref16500883]There are 3 options on how to configure the compression context:
· Option 1: RRC configuration
· Option 2: PDCP data PDU
· [bookmark: _Ref14425735][bookmark: _Ref14437006]Option 3: PDCP control PDU
Option 1 provides great reliability for transmission whereas it takes larger delay compared with Option 2 and 3, which will enlarge the process delay for IIoT. While using Option 2 results in complexity to the specification of data PDU format, e.g. how to perform the SN assignment for the context PDU. Therefore, similar to legacy RoHC, Option 3 is the most efficient with least format design complexity, hence is preferred.
[bookmark: _Ref16492583][bookmark: _Toc16693706]Proposal 4: PDCP control PDU is used to configure the compression context.
0. Ethernet compression state
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Considering that static fields exist in Ethernet headers, the compressor could be set to two states: IR (initial/refresh state) and CO (compressed state).
· IR: the full information/header is sent to the decompressor.
· CO: only compressed packets are sent to the decompressor.
The decompressor is set to two states: NC (initial/refresh state) and AC (compressed state).
[bookmark: _Ref14425689]In IR state the compressor sends the full compression context until the decompressor receives the header information correctly. The compressor then switches from the IR state to the CO state and sends the compressed packet.
[bookmark: _Ref16502201][bookmark: _Ref15890939][bookmark: _Toc16693707]Proposal 5: Define two states in header compression in IIoT: IR and CO.
0. [bookmark: OLE_LINK16][bookmark: OLE_LINK17]Necessity of Feedback
If Proposal 5 is agreed, the header compression for Ethernet will start with IR state. Then, another issue is whether feedback is necessary in above step 1 for state transition, e.g. from IR state to CO state. There are two options addressing this issue.
· Option1：For a given Ethernet flow the compressor first sends several full packets along with the context ID to guarantee that the decompressor has received the full header successfully. In this case, transmission reliability is increased by multiple transmissions.
· Option2：The compressor sends one full packet along with the context ID, and the decompressor feeds back that it has correctly extracted and decoded the full header. The integrity of the full header can be verified e.g. by CRC or any other method. The compressor sends the compressed packets only when it receives some ACK feedback from the decompressor.
For option1, sending multiple packets can improve the integrity and consistency of context with low latency. However, it also results in low resource utilization. Compared with option 1, option 2 provides high reliability but introduces larger delay which is not preferred for IIoT. However, option 1 can’t make sure that there is no error case happening, even though error rate is extremely low. Then, it is proposed that:
[bookmark: _Ref15890948][bookmark: _Toc16693708][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK3][bookmark: OLE_LINK4]Proposal 6: A feedback mechanism between compressor and decompressor is used at the compression flow initialisation/setup.
We design the feedback mechanism as follows. Decompressor in NC sends feedback information to IR: if it is ACK, the IR state is converted to CO state; otherwise, IR state sends the full context again. FC state sends feedback to CO station. If it is ACK, this packet will be submitted to the upper layer. If it is NACK, the compressed packet is re-sent by CO state; if multiple NACK are sent continuously, the CO state is converted to the IR state and the FC state is converted to NC state. This is illustrated in following Figure 1:
· NC (NO CONTEXT): Initially, while working in the "No Context" state, the decompressor has not yet successfully decompressed a packet.
· FC (FULL CONTEXT): The decompressor has successfully established the full context.
· A (ACK): Used to indicate that the decompressor has successfully decompressed the packet.
· [bookmark: Proposal2][bookmark: _Ref14425620][bookmark: _Ref14850559]N (NACK): Used to indicate that the decompression failed or the full context was updated or damaged.

[bookmark: _Ref16494237]
Figure 1 : Ethernet feedback mechanism
We set the feedback format as in Figure 2 showing the one-octet payload of the PDCP control PDU (the PDCP control PDU header with D/C, PDU Type and R bits is reused from legacy format):
· ACK/NACK: The length of the field is 1 bit;
· CID：Indicates which data stream a feedback corresponds to. The length of the field is 6 bits;
· R: is the reserved bit;

[bookmark: _Ref16494365][bookmark: _GoBack]Figure 2: Feedback format
[bookmark: _Ref15890963][bookmark: _Toc16693709]Proposal 7: Feedback formats include ACK/NACK, CID, R.
0. Padding
Now Ethernet stipulates that if the packet size is less than 64 bytes, padding is added to make sure that the packet size fulfills the minimum size limitation. When passing through the 5GC system, removing padding can improve the transmission efficiency, but the gain obviously depends on how much padding is removed, which may change from a packet to another.
From another perspective, since length is not indicated in Ethernet header (at least vastly deployed Ethernet II), DPI, or length indication from lower layer is needed when padding is removed, which will eventually introduce unnecessary implementation complexity. To balance the transmission efficiency and implementation complexity, we propose that we don't remove the padding.
[bookmark: _Ref14850569][bookmark: _Toc16693710]Proposal 8: Padding removal is not considered for IIoT header compression.
Conclusion
We made the following proposals:
Proposal 1: The PDCP header compression only focuses on Ethernet II frame (with Ethertype field, i.e. value >= 1536).
Proposal 2: The PDCP header compression supports exceptions handling for skipping compression of unexpected formats.
Proposal 3: The following fields are compressed: destination and source addresses, Q-Tags (and sub-fields), Ethertype.
Proposal 4: PDCP control PDU is used to configure the compression context.
Proposal 5: Define two states in header compression in IIoT: IR and CO.
Proposal 6: A feedback mechanism between compressor and decompressor is used at the compression flow initialisation/setup.
Proposal 7: Feedback formats include ACK/NACK, CID, R.
Proposal 8: Padding removal is not considered for IIoT header compression.
Reference
[1] [bookmark: _Ref16496706][bookmark: _Ref6562900][bookmark: _Ref14095554][bookmark: _Ref14095797][bookmark: _Ref14438522]3GPP TR 38.825 V100. Study on NR Industrial Internet of Things (IoT).
[2] [bookmark: _Ref4505405][bookmark: _Ref4512479][bookmark: _Ref4509304][bookmark: _Ref4513259]R2-1900841, Ethernet MAC header compression, vivo, 3GPP TSG-RAN WG2 Meeting #105, Athens, Greece, 25th February – 1st March 2019;

R2-1908825
image1.emf
IR

CO

NC

FC

ACK/NACK

ACK/NACK

compression

decompression

oleObject1.bin
�

IR

CO

NC

FC

ACK/NACK

ACK/NACK

compression

decompression

image2.emf
CIDA/NR

D/CPDU TypeRRRR

Oct 1

Oct 2

oleObject2.bin
CID

A/N

R

Oct 1

Oct 2

D/C

PDU Type

R

R

R

R

