Page 1

3GPP TSG-RAN WG2 Meeting #105
R2-1901806
Athens, Greece, February 2019
Agenda item:
11.7.2.3
Source:
Qualcomm Incorporated

Title:
Comparing RoHC and UDC Header Compression for TSN
WID/SID:
Industrial IoT – Release 16 (Study Item)
Document for:
Discussion and Decision

1 Introduction
In email discussion RAN2-104#37, RAN2 has concluded that ethernet header compression is an important feature for TSN. The issue of header compression protocol selection is currently undecided in RAN2.
In this paper, we compare RoHC and UDC/DEFLATE protocol choices, and argue for RoHC framework being selected.
2 Header Compression Protocol Overview
We consider below the separate design philosophies of RoHC and DEFLATE compression schemes.
2.1 RoHC Overview
RoHC (Robust header compression) is described by a generic header compression framework (RFC 5795) together with a RoHC profile for a specific packet header structure. The most commonly used profiles are included in RFC 5225, including IP/UDP/RTP.

The header compression framework allows the creation of compression contexts (identified by a Context ID), which can be thought of as flows within a RoHC instance. For a header field that is unchanging within a context, a control plane message (Initialization and Refresh, IR) can be sent to setup a synchronized context between the sender and receiver. With the synchronized context, the sender can remove the field before transmission and the receiver can insert the field when delivering the packet to higher layers. The header formats with fields removed are defined by the CO header format.
The RoHC profile is specific to the fields and structure of the header (e.g. src/dst address, protocol ID) and defines the IR and CO formats.

A simplified view of RoHC header compression is given in the example below
Context Setup Phase

1. Sender decides to compress Source Address field of a header

2. Sender creates a Context ID (CID) for a flow within RoHC where Source Address=X is compressed

3. Sender sends IR packet signalling the Source Address value for the new CID
4. Receiver sets up context for the Context ID based on received IR packet
Communication Phase

1. Sender sees a packet with Source Address=X

2. Sender creates compressed packet with CID and CO header, where Source Address field is omitted.

3. Receiver uses the CID to insert the Source Address=X

4. Receiver delivers packet to higher layers

5. Note: Packets with Source Address ≠X can continue to be exchanged without compression
2.2 DEFLATE Overview
DEFLATE achieves compression by replacing frequently used patterns in a communication message with shorter fields. The DEFLATE protocol can operate without prior knowledge of the message structure, and is hence a good choice for compression complex protocols such as HTTP or SIP. DEFLATE compression is defined in RFC 1951, and is part of Uplink Data Compression (UDC) feature defined for E-UTRAN in TS 36.323.
The DEFLATE protocol requires the sender and receiver to maintain a shared compression buffer. For strings within the compression buffer, the sender can replace the string with a pointer to a location in the compression buffer. The receiver can replace the pointer with the corresponding string within its own compression buffer.

The compression buffer is updated as data flows between sender and receiver. In order to maintain identical buffers at sender and receiverthe DEFLATE protocol over E-UTRAN also provides for checksum protection of the buffer.
The compression buffer can be initialized with well known “dictionary”, e.g. as for SIP/SDP in RFC 3485 for the IMS use case. This dictionary includes common ASCII formats present in SIP/SDP, such as “AUTHORIZE” and “AUTHENTICATE”. As data flows from sender to receiver, the compression buffer is updated, with the new data being inserted at the front, and old data being pushed out at the end of the buffer.
An example of operation of the DEFLATE protocol is shown below

1. Initial condition is that preconfigured dictionary is not setup

2. Sender sends uncompressed data “The temperature is 25C” and places this uncompressed data in the compression buffer. Receiver receives data and updates its compression buffer.

3. Sender wants to send next data “The temperature is 35C”.

a. The sender scans its compression buffer and determines that the first 19 octets are the same as a string in the compression buffer.

b. Sender sends a control string indicating to the receiver that the first 19 octets are the same as the first 19 octets in the compression buffer, followed by new information “35C”. Sender updates its own compression buffer.

c. Receiver reconstructs the message using the control string, its own compression buffer and the new information.

d. Receiver updates its compression buffer with the new message, and forwards the message to higher layers.

3 Considerations for TSN traffic
In this section, we compare the relative benefits of RoHC and UDC/DEFLATE based approaches for TSN traffic. TSN traffic is characterized by periodic short packets with latency requirement as low as 0.5ms (see clause 5.2 of TS 22.104). This latency is defined to be end-to-end, i.e. it includes header compression time also. This makes it important for the compression and decompression procedures to be performed quickly.

Observation 1: TSN use cases require end-to-end latency as low as 0.5 ms.

Observation 2: Compression time and decompression time also contribute towards end-to-end latency.

Proposal 1: Compression and decompression complexity should be considered when selecting compression scheme for ethernet header compression.

3.1 Complexity Aspects

RoHC

The RoHC framework consists of the following operations at the sender and receiver:

1. Sender examines if incoming packet matches a context that has been setup.

2. Sender constructs compressed header based on the context and transmits packet. Packet includes CID.
3. Receiver receives packet, applies context for the CID and reconstructs header based on context

Given the ethernet header consists of largely static fields, and excludes timestamps and sequence numbers, the procedures above lend to fast implementation. It is in-particular important to note that the compressed header format is well-known for typical compressed flows (e.g. compressed source/dst/protocol fields), allowing for optimized implementations.

RoHC also has the ability to easily separate packets with different header values. For different header values (e.g. due to UE talking with different Ethernet end-points), a CID can be created per flow. Since RoHC includes the CID in the packet header, the receiver can easily apply the correct compression context to the flow. This can be done without assistance from the core network.
DEFLATE

The DEFLATE framework consists of the following operations at sender and receiver

1. Sender scans new message and compression buffer with a sliding window to determine strings that overlap

2. Sender constructs packet with compressed header based on the outcome of the scan and transmits packet.

3. Receiver observes the control sequences in the received packet, and retrieves strings from the compression buffer to reconstruct the packet

In addition, the following additional operators also occur (though not critical to the packet delivery timeline)

2a. Sender updates its compression buffer and computes new checksum which is send along with subsequent packets.
3a. Receiver updates its compression buffer and computes new checksum
The operations of sliding window to scan the compression buffer for matching strings (at transmitter) and retrieving the strings (for receiver) are significantly more complex processes compared with RoHC framework.

Observation 3: RoHC can use knowledge of structure of fields being compressed to help reduce compression time and decompression time

Observation 4: UDC is not structure-aware: UDC is designed to learn structure of information as packets are flowing through, and this learning introduces additional complexity and requires more compression time and decompression time.
3.2 Reliability aspects
The TSN applications target low latency and the RLC AM for error recovery procedures is not a good fit. This has been explained well in the URLLC context in [3] which says “Observation: The latency of RLC AM cannot meet the requirement of 1ms latency in URLLC.”

In case RLC-AM is used for TSN, the loss of a single packet at MAC layer will result in RLC attempting to request retransmission, which can cause two problems:

· subsequent packets could miss their delivery deadlines while the missing packet is recovered

· the recovery of the missing packet recovery may be too late and the packet may not longer be useful to the receiving application.

It should be noted that TSN applications are particularly sensitive to successive lost or late packets, due to the concept of Survival time defined in Section C.2.3 in TS 22.104. Loss of successive packets is defined as system unavailability, which is a significantly worse outcome than one missing packet.
Hence, RLC-UM is a better choice for TSN, because in case of rare packet errors, the overall packet flow is not delayed/disrupted.

Observation 5a: TSN applications are sensitive to successive lost or delayed packets.

Observation 5b: Use of RLC-UM is preferred for TSN applications due to strict latency requirements.
Packet loss and DEFLATE

In case of packet loss there will be buffer asynchronization and resulting buffer resets with DEFLATE. This is because the receiver would be operating with an “older” buffer, and will fail verification of the checksum that the sender generated with the newer buffer. When there is a buffer reset, the following packets will be lost:
· the first packet that was lost at lower layers
· further packets during the interval where the sender does not know that the receiver buffer is out of synchronization fail to be decompressed by the receiver.
Observation 6: UDC requires reestablishment of contexts at compressor and decompressor after a single packet loss, and loss of one lower layer packet can result in failure to decompress future packets, potentially leading to system unavailability for TSN use-case.

Packet loss and RoHC

RoHC is much more robust to packet loss because the compressor and decompressor state are only changed when the context is modified. For static fields such as source/destination, the context needs to be modified only rarely. Hence, RoHC can continue operating without problem with packet loss for static fields. Even for dynamic fields (which are not present in Ethernet), occasional packet loss is tolerable as long the sequence number does not wrap around. For this reason, RoHC profiles for IP/UDP/RTP are used for VoIP applications on RLC-UM.

Observation 7: RoHC is less susceptible to packet losses and loss of one lower layer packet is unlikely to impact future packets.

3.3 Selection of Header Compression Framework
Based on the discussion in previous sections, it can be seen that RoHC is superior to UDC in complexity, as well as in robustness to packet loss. Though UDC has some benefits in its ability to compress unstructured data such as application layer payloads, this benefit comes at the cost of higher complexity and lower error resiliency. This makes UDC an undesirable choice for header compression of Ethernet traffic.
Proposal 3: Select RoHC for Ethernet header compression.
4 Conclusion

The following observations and proposals were made.
Observation 1: TSN use cases require end-to-end latency as low as 0.5 ms.

Observation 2: Compression time and decompression time also contributed towards end-to-end latency.

Proposal 1: Compression time and decompression time should be considered when selecting compression scheme for ethernet header compression.

Observation 3: RoHC can use knowledge of structure of fields being compressed to help reduce compression time and decompression time

Observation 4: UDC is not structure-aware: UDC is designed to learn structure of information as packets are flowing through, and this learning introduces additional complexity and requires more compression time and decompression time.
Observation 5a: TSN applications are sensitive to successive lost or delayed packets.

Observation 5b: Use of RLC-UM is preferred for TSN applications due to strict latency requirements.
Observation 6: UDC requires reestablishment of contexts at compressor and decompressor after a single packet loss, and loss of one lower layer packet can result in failure to decompress future packets, potentially leading to system unavailability for TSN use-case.

Observation 7: RoHC is less susceptible to packet losses and loss of one lower layer packet is unlikely to impact future packets.

Proposal 2: Impact of packet losses should also be considered when selecting compression scheme for ethernet header compression.

Proposal 3: Select RoHC for Ethernet header compression.

5 References

[1] RP-182090, “Revised SID: Study on NR Industrial Internet of Things (IoT)”
[2] 3GPP TS 22.104, Service requirements for cyber-physical control applications in vertical domains; Stage 1.

[3] R2-1805472, “Discussion on supporting RLC AM for PDCP duplication”, Huawei, HiSilicon, RAN WG2 Meeting #101b.
