3GPP TSG-RAN WG2 Meeting #102
R2-1809082
Busan, South Korea, 21-25 May 2018

(update of R2-1808715)
Agenda Item:
10.4.1.8.2
Source:
Huawei, HiSilicon
Title:
Optimization of Access Control configuration in NR
Document for:
Discussion and decision
1 Introduction
In the RAN2 #101bis meeting [1], following agreements were achieved:
Agreements for LTE/5GC and NR

1:
Barring information common to multiple Access Categories are specified. Number of different sets of barring parameters is small [e.g. 2 or 4 or 8]

2
For each Access Category there is a link to which of the sets of barring information is to be used; or

For each set of barring inform there are links (e.g. bit map) to which Access Categories use the barring set

FFS Link direction to be concluded considering at least the worst case situation

Agreements

1
Adopt option 1 (Link from AC to the parameter set).

2
The parameter barring sets are configured in SI

Working assumption

1
Number of barring sets in SI will be up to N. N will be at most 8.

In this paper, we will discuss more on the basic access control in NR, especially on further details of the access control procedure and the structure of signalling.
2 Discussion
In the last meeting, how to indicate barring parameter set were discussed. Two options were compared on how to present one barring parameter set: one is using set index, the other one is using bitmap. After numerical comparison, set index with log2(N) number of bits is adopted. Thus, if to indicate every Access Category, i.e., 63 Access Categories (Category 0 is MO signalling resulting from paging, which shall not be barred), the access control signalling overhead for an area (suppose 12 PLMNs in this area) is:

12 * 63 * log2(8) = 2268 bits
Here, we suppose the number of access barring parameter sets N = 8.

The advantage of this approach is clear, in that it is not necessary to define a set of access control parameters for each Access Category. Instead, each Access Category simply uses a short pointer (e.g. 3 bits) to point to a set of access control parameters. There is of course some additional overhead to provide this indexed list of access parameter sets, but the overhead of this list is shared among all access categories and all PLMNs for which access barring is defined.

However, even with this optimization, it is clear from the above example that the size of the information for access barring is proportional to the number of PLMNs x the number of Access Categories (12*63 = 756). In the following we propose solutions to further reduce the size of the access barring information that needs to be broadcast.

Observation 1: The biggest impact from access barring configuration is due to the number of PLMNs and the number if Access Categories per PLMN for access barring is configured.
Number of Access Barring Parameter Sets
Per the e-mail discussion on TP for Access Control, we assume the list of access parameter sets is encoded as follows:

UAC-BarringInfoSetList

SEQUENCE (SIZE (1..maxBarringInfoSet)) OF UAC-BarringInfoSet

-- FFS: maxBarringInfoSet = at most 8
UAC-BarringInfoSet ::= SEQUENCE {

uac-BarringInfo

SEQUENCE {

uac-BarringFactor

ENUMERATED {

p00, p05, p10, p15, p20, p25, p30, p40,

p50, p60, p70, p75, p80, p85, p90, p95},

uac-BarringTime

ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512},

uac-BarringForAccessIdentity

BIT STRING (SIZE(7))

-- maxAccessIdentity = 7
-- bit 0 in the bit string corresponds to AI1, bit 1 to AI2, bit 2 to AI11, bit 3 to AI12 and so on

-- Value 0 indicates that access attempt is allowed for the corresponding access identity

}
}

Base on this we can see that a single instance of access barring parameters (UAC-BarringInfoSet IE) should be encoded as 14 bits. The overhead of the full list of access control parameters (UAC-BarringInfoSetList IE) depends on the number of access barring parameter sets supported N. In the last meeting we had a working assumption that N would be at most 8. With this assumption the size of UAC-BarringInfoSetList can be calculated to be: 3+8*14=115 bits.
Some companies have proposed to limit the number of access barring parameter sets to something less than 8. In order to achieve efficient encoding of UAC-BarringInfoSetList it is clear that N should be a power of 2. Hence, another option would be to agree N = 4. Using this assumption, we can calculate the size of UAC-BarringInfoSetList as: 2+4*14 = 58 bits, for a savings of 57 bits. However, the tradeoff is that only 4 sets of access barring parameter sets, which is too few to even fully differentiate the barring parameter configuration for the access categories standardized in Rel. 15 (AC1 – AC7).
Observation 2: Limiting maxBarringInfoSet to 4 would allow full differentiation of barring parameter configuration for even the access categories standardized in Rel. 15
Given this limitation, we think that it would not be particularly useful to limit the maximum number of access barring parameter sets to something less than 8, as the savings would not justify the impact. Also based on the conclusion drawn from Observation 1, it seems far more useful to focus RAN2’s efforts on optimizing the encoding of how access categories are listed, and how access barring parameters are encoded per each PLMN.

Proposal 1: Confirm the working assumption from the last meeting; maxBarringInfoSet = 8
PLMN-common configuration

PLMN-common configuration can be considered as a default configuration. if no per-PLMN specific configuration exists for a given PLMN. On the other hand, if per-PLMN configuration exists, then this configuration is applied for the specific PLMN. In this way, when not every PLMN in this area is configured, any non-configured PLMN would take the configuration of the PLMN-common configuration for access control.
Proposal 2: SI broadcasts one common access barring configuration, and up to 12 per-PLMN access barring configurations. The common access barring configuration is applied for any PLMN for which a per-PLMN configuration is not provided.
Reduction of broadcast Access Categories

The primary contributor to the size of access barring information is the need to provide access parameters for each of the 63 possible Access Categories (excluding AC0). It is likely that only a small subset of these categories are of interest to the network operator. For example, categories 8 – 31 are reserved and likely will not be defined or used for Rel. 15. Also, categories 32 – 63 are not standardized, and it is likely that an operator may only define a subset of these. Therefore, instead of presenting every Access Category, only the access categories of interest to the network can be broadcasted.
Any Access Category for which a barring parameter set is not explicitly defined could follow a default configuration, (e.g. either be considered as not barred), or be considered as the same configuration with a default barring parameter set (e.g. the common barring parameter set).
In addition, it is not necessary to use a single approach to list these different types of access categories. For example, it seems likely that barring parameters for AC1 – AC7 will typically be defined for any network (even if some of these categories point to the same set of barring parameters). On the other hand, which and how many operator defined access categories will clearly be different in different operator networks. How best to optimize the encoding of access barring parameters for standardized vs. operator defined access categories may be different, and hence it seems reasonable to list each of these types of access categories separately.

In addition, it is not clear if there is need for Rel. 15 to support the encoding of access barring parameters for AC8 – AC31, if no access category in this set will be supported for Rel. 15.

Proposal 3: Use separate IEs to list standardized and operator defined access categories, to enable the optimization of the encoding for each of these lists to be done individually.

Proposal 4: RAN 2 should discuss whether there is a need to support the encoding of access barring parameters for AC8 – AC31 in Rel. 15.

Common barring parameter set
As discussed above, the size of barring configuration can be significantly reduced by defining a Common Barring Parameter set that is a set applied to many Access Categories. The common set can be seen as a default set applied to an Access Category if the Access Category is not linked to any specific parameter set index (e.g. the specific Access Category is not listed). In this understanding, there’s no need to explicitly indicate Access Category to the common set, since all Access Categories that are not linked to a different parameter set would be considered as linked to the common set. In this way, signalling overhead is further reduced.
Observation3: There is no need to link every Access Category to a set of barring parameter set. Access Categories that are not explicitly linked to parameter set can be considered as linked to a default access barring parameter set (Common Barring Parameter set).
Proposal 5: One of the configured access barring parameter sets can be designated as the Common Barring Parameter set. This parameter set is used for any Access Category that is not explicitly listed in the configuration.
One consideration is whether to define a single default set of barring parameters that apply to all PLMNs, or if it is useful for different PLMNs to have different Common Barring Parameter set configurations. It is very possible that an operator may desire to apply different default barring behaviour for different PLMNs. In addition, the identification of one of the barring parameter sets as the Common Barring Parameter set simply requires a pointer to the selected parameter set, which is of size log2(N) (e.g. 3 bits for N = 8). Hence, the overhead of designating a Common Barring Parameter set per PLMN would not be at most (12+1)* log2(N) bits (e.g. 13*3 = 39 bits for N = 8). Therefore, it seems reasonable to define a Common Barring Parameter set for each configured PLMN, and a Common Barring Parameter set for the PLMN-common configuration.

Proposal 6: For each PLMN configuration defined, and for the PLMN-common configuration, one of the configured access barring parameter sets shall be designated as the Common Barring Parameter set for that PLMN.
Indication method for Access Category

There are several ways in which the mapping of access categories to access barring parameter sets can be defined and encoded. In essence, we need to provide a list of access categories, and map a specific set of access barring parameters to each of the access categories listed.
One approach is simply to provide a list of access barring parameters for all access categories:

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= INTEGER (1.. maxBarringInfoSet)
Clearly this approach is most efficient if barring parameters for all of the listed access categories need to be defined, as there is no additional overhead to indicate the specific access category. However, we know that this is not the typical case for operator defined access categories. So a more efficient approach of encoding should be consider, at least for operator defined access categories.

On the other hand, we previously observed that barring parameters for at least AC1 – AC7 will likely be defined in most networks, and AC8 – AC31 may not need to be supported in Rel. 15. Hence, it seems useful to use this simple list approach to encode access barring parameters for AC8 – AC31.

Proposal 7: Use the simple list approach (not explicitly including access category) to encode access categories AC1 – AC7.
In the TP proposed by LG as a result of the e-mail discussion the following encoding is also proposed:

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= SEQUENCE {

AccessCategory

INTEGER (1..maxAccessCat-1),

uac-barringInfoSetIndex

INTEGER (1.. maxBarringInfoSet)
}
According to this approach a list is provided (UAC-BarringPerCatList), and each entry of the list contains an AC (AccessCategory) and a pointer to the corresponding access barring parameter set (uac-barringInfoSetIndex). Assuming that this list needs to support the encoding of any of the 63 access categories (AC 1- AC63), the AccessCategory is a 6 bit number. On the other hand, if we separate the encoding of standardized and operator access categories into two different lists, then we can use fewer bits to encode the access category in each list. In other words, we would require only a 5 bit field to encode AC32 – AC63 in the list of operator defined access categories.
Let’s consider some examples for different numbers of operator defined access categories:
Overhead to represent access barring configuration for 1 PLMN, using list of operator defined access categories:
Worst case (32 defined categories): [log2(32) + 3]* 32 = 256 bits

Moderate case (16 defined categories): [log2(32) + 3] * 16 = 128 bits

Typical case (8 defined categories): [log2(32) + 3] * 8 = 64 bits

By way of comparison, using the simple list approach would always require 3*32 = 96 bits, which is clearly more efficient except when the number of defined access categories is small. However, the latter case may be typical for operator defined access categories. Therefore, it seems useful to support both approaches for operator defined categories, and allow the method of encoding the list to be configurable.
Proposal 8: Support both simple list and explicit encoding for access category in the list, at least for operator defined access categories. The method of encoding the list should be configurable.
As we have just illustrated, explicitly encoding each access category in the list is efficient only when few access categories are configured. However, the alternative of using a simple list of 32 entries is still rather inefficient. A third approach to consider would be to use a bitmap to encode the access categories provided in the list. This can be seen as an enhancement of the previous two approaches. The size of the bit map would of course be large enough to define the maximum number of access categories that can be encoded (e.g. 32 bits for operator defined access categories). However, since explicitly encoding the access category would require a relatively large field size (e.g. 5 bits per operator defined access category), it is clear that this approach could be efficient when more than a few categories need to be defined (e.g. ~ > 7 operator defined categories).
As an example, let’s repeat the previous calculations for the bit map approach of encoding access categories:

Overhead to represent access barring configuration for 1 PLMN, bitmap approach:
Worst case (32 defined categories): Bitmap (32) + 32 * 3 = 128 bits

Moderate case (16 defined categories): Bitmap (32) + 16 * 3 = 80 bits

Typical case (8 defined categories): Bitmap (32) + 8 * 3 = 56 bits

As expected, the bit map approach is more efficient than explicitly listing access categories, except when very few categories are configured. However, the simple list approach is still more efficient when a large number of categories needs to be configured
Therefore, we propose to consider using a bit map to indicate the Access Categories for which access barring parameters are explicitly provided by the parameter index list. If a bit in the bitmap is set to 1, this indicates that there is a corresponding access barring parameter index in the index list. The location of the bit in the bitmap indicates the Access Category number. If a bit in the bitmap is set to 0, then the corresponding Access Category uses the access barring parameter set indicated by the Common Barring Parameter set for that PLMN.
Proposal 9: Support using a bitmap and a corresponding list of indices to access barring parameter sets:
· Each bit in the bitmap corresponds to an Access Category number.
· The length of the barring parameter index list is equal to the number of bits set to 1 in the bitmap.
· If a bit in the bitmap is set to 1, an index to an access barring parameter set is explicitly identified for the corresponding Access Category,
· Access barring parameter set indices are listed in the order of the bits set to 1 in the bitmap
· If a bit in the bitmap is set to 0, the corresponding Access Category uses the access barring parameter set designated as the Common Barring Parameter set for the PLMN.
Proposal 10: The method of encoding the list of access barring parameters (simple list, explicit access category, access category bitmap) is configurable.
3 Conclusion

The paper continues to discuss the basic access control mechanism in NR and we propose:

Proposal 1: Confirm the working assumption from the last meeting; maxBarringInfoSet = 8

Proposal 2: SI broadcasts one common access barring configuration, and up to 12 per-PLMN access barring configurations. The common access barring configuration is applied for any PLMN for which a per-PLMN configuration is not provided.

Proposal 3: Use separate IEs to list standardized and operator defined access categories, to enable the optimization of the encoding for each of these lists to be done individually.

Proposal 4: RAN 2 should discuss whether there is a need to support the encoding of access barring parameters for AC8 – AC31 in Rel. 15

Proposal 5: One of the configured access barring parameter sets can be designated as the Common Barring Parameter set. This parameter set is used for any Access Category that is not explicitly listed in the configuration.
Proposal 6: For each PLMN configuration defined, and for the PLMN-common configuration, one of the configured access barring parameter sets shall be designated as the Common Barring Parameter set for that PLMN.
Proposal 7: Use the simple list approach (not explicitly including access category) to encode access categories AC1 – AC7.

Proposal 8: Support both simple list and explicit encoding for access category in the list, at least for operator defined access categories. The method of encoding the list should be configurable.

Proposal 9: Support using a bitmap and a corresponding list of indices to access barring parameter sets:

· Each bit in the bitmap corresponds to an Access Category number.
· The length of the barring parameter index list is equal to the number of bits set to 1 in the bitmap.
· If a bit in the bitmap is set to 1, an index to an access barring parameter set is explicitly identified for the corresponding Access Category,
· Access barring parameter set indices are listed in the order of the bits set to 1 in the bitmap
· If a bit in the bitmap is set to 0, the corresponding Access Category uses the access barring parameter set designated as the Common Barring Parameter set for the PLMN.

Proposal 10: The method of encoding the list of access barring parameters (simple list, explicit access category, access category bitmap) is configurable.
4 References
[1] RAN2#101bis chairman notes
3GPP

