
3GPP TSG-RAN WG2 Meeting 101bis
R2-1804422
Sanya, China, April 16 – April 20 2018
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	38.322
	CR
	0004
	rev
	-
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	X
	Core Network
	

	

	Title:

	Correction on POLL_SN

	
	

	Source to WG:
	Huawei, HiSilicon

	Source to TSG:
	R2

	
	

	Work item code:
	NR_newRAT-Core
	
	Date:
	2018-04-16

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	1． According to the current version of TS 38.322, POLL_SN is set to TX_Next-1 which is larger than the SN of the last RLC PDU that has been transmitted due to pre-processing. This will lead to unnecessary POLL retransmission as t-PollRetransmit may not be stopped.
2． The description “consider the RLC SDU with SN = TX_Next – 1 for retransmission” is redundant and may cause the same issue as clarified above.

	
	

	Summary of change:
	1. In 5.3.3.2, change the description to “Set the POLL_SN to the highest SN among the AMD PDUs submitted to lower layer with the poll bit set to “1” ”;
2. In 5.3.3.4, remove the description “consider the RLC SDU with SN = TX_Next – 1 for retransmission”;
3. In 7.1, change the definition of POLL_SN.
Impact analysis
Impacted functionality:

RLC polling

Inter-operability:

1. If the UE is implemented according to this CR but the network is not, there is no backward compatibility issue;

2. If the network is implemented according to this CR but the UE is not, there is no backward compatibility issue.

	
	

	Consequences if not approved:
	It will lead to unnecessary POLL retransmissions if UE is allowed to do pre-pro-cessing.

	
	

	Clauses affected:
	5.3.3.2, 5.3.3.4, 7.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*******[Start of change]********
5.3.3.2
Transmission of a AMD PDU

Upon notification of a transmission opportunity by lower layer, for each AMD PDU submitted for transmission such that the AMD PDU contains either a not previously transmitted RLC SDU or an RLC SDU segment containing not previously transmitted byte segment, the transmitting side of an AM RLC entity shall:
-
increment PDU_WITHOUT_POLL by one;
-
increment BYTE_WITHOUT_POLL by every new byte of Data field element that it maps to the Data field of the AMD PDU;
-
if PDU_WITHOUT_POLL >= pollPDU; or
-
if BYTE_WITHOUT_POLL >= pollByte:

-
include a poll in the AMD PDU as described below.
Upon notification of a transmission opportunity by lower layer, for each AMD PDU submitted for transmission, the transmitting side of an AM RLC entity shall:

-
if both the transmission buffer and the retransmission buffer becomes empty (excluding transmitted RLC SDUs or RLC SDU segments awaiting acknowledgements) after the transmission of the AMD PDU; or

-
if no new RLC SDU can be transmitted after the transmission of the AMD PDU (e.g. due to window stalling);
-
include a poll in the AMD PDU as described below.

NOTE:
Empty RLC buffer (excluding transmitted RLC SDUs or RLC SDU segments awaiting acknowledgements) should not lead to unnecessary polling when data awaits in the upper layer. Details are left up to UE implementation.

To include a poll in an AMD PDU, the transmitting side of an AM RLC entity shall:

-
set the P field of the AMD PDU to "1";
-
set PDU_WITHOUT_POLL to 0;

-
set BYTE_WITHOUT_POLL to 0.
After submitting an AMD PDU including a poll to lower layer and after incrementing of TX_Next if necessary, the transmitting side of an AM RLC entity shall:

-
set POLL_SN to the highest SN among the AMD PDUs submitted to lower layer with the poll bit set to “1”;

-
if t-PollRetransmit is not running:

-
start t-PollRetransmit.
-
else:

-
restart t-PollRetransmit.

[Text Omitted Here]
5.3.3.4
Expiry of t-PollRetransmit
Upon expiry of t-PollRetransmit, the transmitting side of an AM RLC entity shall:

-
if both the transmission buffer and the retransmission buffer are empty (excluding transmitted RLC SDU or RLC SDU segment awaiting acknowledgements); or

-
if no new RLC SDU or RLC SDU segment can be transmitted (e.g. due to window stalling):

-
consider any RLC SDU which has not been positively acknowledged for retransmission.

-
include a poll in an AMD PDU as described in section 5.3.3.2.
[Text Omitted Here]
7.1
State variables
This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.

All state variables and all counters are non-negative integers.

All state variables related to AM data transfer can take values from 0 to 4095 for 12 bit SN or from 0 to 262143 for 18 bit SN. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 4096 for 12 bit SN and 262144 for 18 bit SN).
All state variables related to UM data transfer can take values from 0 to 63 for 6 bit SN or from 0 to 4095 for 12 bit SN. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 64 for 6 bit SN and 4096 for 12 bit SN).
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used.

TX_Next_Ack and RX_Next shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. RX_Next <= SN < RX_Next + AM_Window_Size is evaluated as [RX_Next – RX_Next] modulo 2[sn-FieldLength] <= [SN – RX_Next] modulo 2[sn-FieldLength] < [RX_Next + AM_Window_Size VR(R) – RX_Next] modulo 2[sn-FieldLength]), where sn-FieldLength is 12 or 18 for 12 bit SN and 18 bit SN, respectively.

RX_Next_Highest– UM_Window_Size shall be assumed as the modulus base at the receiving side of an UM RLC entity. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. (RX_Next_Highest– UM_Window_Size) <= SN < RX_Next_Highest is evaluated as [(RX_Next_Highest– UM_Window_Size) – (RX_Next_Highest– UM_Window_Size)] modulo 2[sn-FieldLength] <= [SN – (RX_Next_Highest– UM_Window_Size)] modulo 2[sn-FieldLength] < [RX_Next_Highest– (RX_Next_Highest– UM_Window_Size)] modulo 2[sn-FieldLength]), where sn-FieldLength is 6 or 12 for 6 bit SN and 12 bit SN, respectively.

The transmitting side of each AM RLC entity shall maintain the following state variables:

a) TX_Next_Ack – Acknowledgement state variable

This state variable holds the value of the SN of the next RLC SDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an RLC SDU with SN = TX_Next_Ack.
b) TX_Next – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU. It is initially set to 0, and is updated whenever the AM RLC entity constructs an AMD PDU with SN = TX_Next and contains an RLC SDU or the last segment of a RLC SDU.

c) POLL_SN – Poll send state variable

This state variable holds the value of of the highest SN among the AMD PDUs submitted to lower layer with the poll bit set to “1”. It is initially set to 0.
The transmitting side of each AM RLC entity shall maintain the following counters:

a) PDU_WITHOUT_POLL – Counter

This counter is initially set to 0. It counts the number of AMD PDUs sent since the most recent poll bit was transmitted.

b) BYTE_WITHOUT_POLL – Counter

This counter is initially set to 0. It counts the number of data bytes sent since the most recent poll bit was transmitted.
c) RETX_COUNT – Counter

This counter counts the number of retransmissions of an RLC SDU or RLC SDU segment (see subclause 5.3.2). There is one RETX_COUNT counter maintained per RLC SDU.
The receiving side of each AM RLC entity shall maintain the following state variables:

a) RX_Next – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received RLC SDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an RLC SDU with SN = RX_Next.

b) RX_Next_Status_Trigger – t-Reassembly state variable

This state variable holds the value of the SN following the SN of the RLC SDU which triggered t-Reassembly.

c) RX_Highest_Status – Maximum STATUS transmit state variable

This state variable holds the highest possible value of the SN which can be indicated by “ACK_SN” when a STATUS PDU needs to be constructed. It is initially set to 0.

d) RX_Next_Highest – Highest received state variable

This state variable holds the value of the SN following the SN of the RLC SDU with the highest SN among received RLC SDUs. It is initially set to 0.
Each transmitting UM RLC entity shall maintain the following state variables:
a) TX_Next
This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU with segment. It is initially set to 0, and is updated after the UM RLC entity submits a UMD PDU including the last segment of an RLC SDU to lower layers.

Each receiving UM RLC entity shall maintain the following state variables and constant:
b) RX_Next_Reassembly – UM receive state variable
This state variable holds the value of the earliest SN that is still considered for reassembly. It is initially set to 0.

c) RX_Timer_Trigger – UM t-Reassembly state variable
This state variable holds the value of the SN following the SN which triggered t-Reassembly.

d) RX_Next_Highest– UM receive state variable
This state variable holds the value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs. It serves as the higher edge of the reassembly window. It is initially set to 0.
*******[End of change]********
