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Introduction
During RAN plenary #78, the release 15 NR specifications were approved. Furthermore, it was agreed that during the first quarter of 2018, RAN1 will continue to focus on the stabilizing of the basic and essential functionalities within the scope of the December drop. 
This contribution deals with the following conclusion reached in RAN1 #91 [1]:
Conclusion:
· RAN1 common understanding is that the PDCCH channel estimation complexity is not negligible at least in some cases.
· FFS: Possible solutions to resolve the channel estimation complexity issue together with the impact on PDCCH blocking probability
· Opt.1: Define the limits of “the number of CCEs for PDCCH channel estimation which refers to the union of the sets of CCEs for PDCCH candidates”
· Note: the overlapped CCEs associated with different CORESETs are counted separately.
· FFS: CCEs for the same precoder-granularity are counted as one channel estimation
· FFS: whether/how to handle the variation on the actual number of CCEs for PDCCH channel estimation and BDs over time
· Application of overbooking is considered
· Strive for not having specific UE capability to report the maximum number of CCEs for PDCCH channel estimation.
· Study the solutions considering the cases 1-1, 1-2, 2, and 2’.
· Opt.2: Modify the hashing function
· Opt.3: Increase the size of the precoder granularity

In the subsections of Section 2, we demonstrate how CCE channel estimation limitation impacts the network, and we propose two possible solutions aligned with Opt.1 and Opt.2 of the Conclusion.  
On NR operation under BD and channel-estimation limitations 
NR specifics are the following:
· UE can be configured with up to [3] CORESETs and up to [10] search space sets within a BWP per cell.
· Wide range of configurability of user-specific search spaces, in particular the number of PDCCH candidates per aggregation level can be configured among {0, 1, 2, 3, 4, 5, 6, 8}, monitoring periodicities of different search-space sets can be different
· The hashing function per each AL is slot dependent.

Different services and corresponding search space sets may use different PDCCH monitoring periodicities. To manage different services in an optimal manner, it would be preferable to configure PDCCH monitoring in different search space sets independently from each other. The consequence of this is that the number of BDs configured may vary from slot to slot, e.g. according to the number of search space sets monitored in the slot. We think that NR should allow over-booking of the BDs for some time instances, as for majority of time instances the BDs would be below the maximum. 
Observation #1: When a gNB serves multiple services with different PDCCH monitoring periodicity, the infrequent monitoring peaks may occur. The gNB should be allowed to over-book BDs during these infrequent peaks, to avoid BD restrictions in other monitoring occasions.   
In addition, the hashing function is slot dependent, resulting in slot dependent overlap of candidates and therefore variable number of CCE to be channel estimated in the slot. We studied the variation of the number of CCEs in a search-space on an example in Figure 1 that depicts the average (solid) and maximum (dashed) number of CCEs assigned by the hashing function for different CORESET sizes, when both CSS and USS are assigned with candidate numbers per aggregation level (1, 2, 4, 8), agreed as a working assumption (0, 0, 4, 2) for CSS and a default set of values (6, 6, 2, 2) for USS, respectively. It can be seen, that with this configuration for a single CSS and single USS, the maximum number of assigned CCEs can easily exceed 48 CCEs for all CORESETs carrying 48 or more CCEs, while average number of CCEs (over RNTIs and slot numbers) to be channel estimated is clearly smaller. Note that the largest supported CORESET in NR contains 270*3/6=135 CCEs. For the CSS, 24 CCEs are allocated with the NR hashing function, i.e. 16-24 CCEs are available for assignment of USS if CSS and USS have no overlap and if the number of assigned CCEs is limited to 40-50, respectively.
[image: ]
[bookmark: _Ref501625440]Figure 1: Average (solid) and maximum (dashed) number of CCEs assigned by the NR hashing function depending on the CORESET size for both CSS and USS.

Observation #2: If CCE overbooking would not be allowed and CCE limitation would be set to 48 CCE, gNB would not be able to configure single CSS (0, 0, 4, 2, 0) and single USS (6, 6, 2, 2, 0) in a CORESETs larger than 48CCE. 


Proposal #1: NR supports search-space-set configurations that may result in over-booking BDs and CCEs in a slot.
· FFS: How to reduce the PDCCH BDs down to the allowed level for over-booked monitoring occasions.  

Dropping of BDs/candidates due to channel estimation and BD limitations
To support over-booking of the BDs and CCEs, there is a need to reduce the number of BDs down to the allowed level in some slots. This requires definition of some rules to reduce the number of BDs and/or CCEs in those slots. There are two separate cases, which require attention:
· Case 1: Maximum number of PDCCH BDs per slot exceeded  
· Case 2: Channel estimation complexity in terms of number of CCEs per slot is not negligible.   

It is noted that explicit upper limits for the number of PDCCH BDs covering different scenarios of Case 1 have already been agreed in RAN1#91. There are three candidate solutions identified in RAN1#91 to manage the channel estimation complexity issue (Case 2) and variation of BDs (Case 1). It can be noted that, that Case 1 and Case 2 are dependent, because reducing the number of PDCCH BDs will also reduce the channel estimation burden at the UE side.

BD reduction due to limited number of BDs per 
To support over-booking of the BDs, we propose to define explicit rules how to reduce the PDCCH candidates down to the allowed level. To avoid RAN2 impact, the rule should be such that it does not introduce additional RRC signalling. 
We think that BD reduction should operate within the predefined search space sets. Generally speaking, it makes sense to apply BD reduction only for UE-specific search space sets. In other words, PDCCH candidates in common search space sets should never be dropped.
We propose that BD dropping rule is based on predefined BD priority numbers. The priority number is counted separately for each PDCCH candidate subject to BD dropping. The priority number depends on:
· the PDCCH candidate index within the search space set s and aggregation level L. PDCCH candidates can be indexed according to the index m defined by the hashing function.
· the total number PDCCH candidates within the search space set and aggregation level.

We propose that the priority number, denoted as , is defined as 
.
·  is the search space set index
· L is the aggregation level index, 
· 
number of PDCCH candidates
· m is the index of the PDCCH candidate.

To define the rules for BD reduction, we denote:
· R is the required number of PDCCH BDs per slot
· N is the maximum number of PDCCH BDs per slot supported by UE.
There is a need for BD reduction (dropping) when R>N for a certain slot 
· K’ PDCCH candidates corresponding to K BD from one or more search space sets are dropped, K=R-N
· K’ PDCCH candidates to be dropped are defined according to the smallest  within all the involved search space sets subject to BD dropping.
· If multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities, for example:
· PDCCH candidate with a lower AL L is dropped first
· PDCCH candidate with a lower search space set priority is dropped first. Search space set priority can be derived implicitly e.g. from search space set ID s.

It can be noted that the proposed BD reduction operates in such a manner that it reduces PDCCH candidates from different aggregation levels and search space sets quite evenly. Furthermore, it allows pre-calculation of the number of PDCCH candidates to be dropped in advance. Finally, it does not require any additional RRC signaling (on top of the existing one).
Proposal #2: BD dropping in a serving cell is based on the predefined rules and it should not introduce additional RRC signaling.

Proposal #3: BD dropping in a serving cell is applied only for UE-specific search space sets

[bookmark: _Hlk503280436]Proposal #4: BD dropping in a serving cell is based on predefined BD priority number .

[bookmark: _Hlk503280241]Proposal #5: When there is a need for BD dropping in a slot, PDCCH candidates to be dropped are defined according to the smallest  within all the involved search space sets subject to BD dropping. If multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities:
· PDCCH candidate with a lowest AL L is dropped first
· PDCCH candidate with a lowest search space set priority is dropped first. Search space set priority is derived implicitly from the search space set ID s.



CCE reduction due to limited channel estimation capability 
There are three candidate solutions identified in RAN1#91 to manage the UE channel estimation complexity issue: 
· Opt.1: Define the limits of “the number of CCEs for PDCCH channel estimation which refers to the union of the sets of CCEs for PDCCH candidates
· Opt.2: Modify the hashing function
· Opt.3: Increase the size of the precoder granularity

In the following we consider CCE reduction based on Opt.1. The simplest approach for limiting the number of CCEs for PDCCH channel estimation might be to have a common solution for both BD reduction and CCE reduction. We also think that CCE reduction should operate with full PDCCH candidates. In other words, if at least one CCE of a PDCCH candidate is dropped then all the CCEs of the same PDCCH candidate become dropped.
Proposal #6: If CCE reduction scheme is defined according to Opt1, strive for a common solution for BD reduction and CCE reduction.

If there is a need for CCE reduction scheme according to Opt. 1, we propose to make it based on the predefined BD priority number  defined for PDCCH candidate reduction. The main difference between the BD reduction and the CCE reduction is the following:
· BD reduction: dropping can be done in the search space -specific manner
· CCE reduction: dropping is done in the CORESET space -specific manner.

With CCE reduction, if a certain CCE of a CORESET is dropped, this will impact all PDCCH candidates of search space sets of the same CORESET. In other words, if CCE(s) of a selected PDCCH candidate(s) are dropped, all valid candidates which overlap with the PDCCH candidate in at least one CCE are also dropped. This implies that depending on the CCE overlap between different PDCCH candidates within a CORESET, CCE reduction may result different amount of reduction of PDCCH candidates.  
When there is a need to drop one or more CCEs due to the CCE cap, it makes sense to drop PDCCH candidates sequentially according to the priority number ), where dropping is continued until the number of CCEs/slot is within the predefined CCE cap. It is also possible to have a rule where predefined CCEs (such as CCEs belonging to TYPE0, TYPE0A, TYPE1, TYPE2 and/or TYPE3) are never dropped.  

Proposal #7: In the proposed CCE reduction scheme, UE drops one PDCCH candidate after another according to the BD priority number, until the CCE cap is reached. If CCEs of selected candidate is dropped, also other candidates fully or partially overlapping with the CCE(s) are dropped.  

Proposal #8: Consider a rule where predefined CCEs such as CCEs belonging to TYPE0 and TYPE0A are never dropped.

BD reduction and CCE reduction at the same time slot 
It is possible that the need for CCE reduction exists at the same time with the need for BD reduction. It makes sense to perform BD reduction first in this case. If additional CCE reduction is needed after the BD reduction, it can be made with the rules defined for CCE reduction.
Proposal #9: In the cases when the need for CCE reduction exists at the same time with the need for BD reduction, perform BD reduction first.

38.213 Text proposal 
	For each serving cell DL BWP that a UE is configured to monitor PDCCH in a search space other than Type0-PDCCH common search space, the UE is configured the following:

-	a number S of search space sets by higher layer parameter search-space-config, where  ; 

-	for each search space set s in a control resource set  
- 	association to control resource set p, set by higher layer parameter controlResourceSetId	
-	an indication that the search space set is a common search space set or a UE-specific search space set by higher layer parameter Common-search-space-flag; 


-	a number of PDCCH candidates  per CCE aggregation level  by higher layer parameters Aggregation-level-1, Aggregation-level-2, Aggregation-level-4, Aggregation-level-8, and Aggregation-level-16, for CCE aggregation level 1, CCE aggregation level 2, CCE aggregation level 4, CCE aggregation level 8, and CCE aggregation level 16, respectively;

-	a PDCCH monitoring periodicity of  slots by higher layer parameter Monitoring-periodicity-PDCCH-slot;


-	a PDCCH monitoring offset of  slots, where , by higher layer parameter Monitoring-offset-PDCCH-slot;
-	a PDCCH monitoring pattern within a slot, indicating first symbol(s) of the control resource set within a slot for PDCCH monitoring, by higher layer parameter Monitoring-symbols-PDCCH-within-slot. 
A UE determines a PDCCH monitoring occasion from the PDCCH monitoring periodicity, the PDCCH monitoring offset, and the PDCCH monitoring pattern within a slot. 



A PDCCH UE-specific search space  at CCE aggregation level  is defined by a set of PDCCH candidates for CCE aggregation level . 
If a UE is configured with higher layer parameter CrossCarrierSchedulingConfig for a serving cell the carrier indicator field value corresponds to the value indicated by CrossCarrierSchedulingConfig.
For a serving cell on which a UE monitors PDCCH candidates in a UE-specific search space, if the UE is not configured with a carrier indicator field, the UE shall monitor the PDCCH candidates without carrier indicator field. For a serving cell on which a UE monitors PDCCH candidates in a UE-specific search space, if a UE is configured with a carrier indicator field, the UE shall monitor the PDCCH candidates with carrier indicator field.
A UE is not expected to monitor PDCCH candidates on a secondary cell if the UE is configured to monitor PDCCH candidates with carrier indicator field corresponding to that secondary cell in another serving cell. For the serving cell on which the UE monitors PDCCH candidates, the UE shall monitor PDCCH candidates at least for the same serving cell. 



For a control resource search space set s, the CCEs corresponding to PDCCH candidate  of the search space for a serving cell corresponding to carrier indicator field value  are given by 


where

for any common search space,; 





for a UE-specific search space,, , , , and ;

;


 is the carrier indicator field value if the UE is configured with a carrier indicator field for the serving cell on which PDCCH is monitored; otherwise, including for any common search space, ;



 is the number of CCEs, numbered from 0 to , in control resource set ; 




, where  is the number of PDCCH candidates the UE is configured to monitor for aggregation level  for a serving cell corresponding to ; 

for any common search space, ; 





for a UE-specific search space, is the maximum of  for all corresponding DCI formats over all configured  values for a CCE aggregation level  in control resource set  search space set s in control resource set ;

the RNTI value used for  is defined in [5, TS 38.212] and in [6, TS 38.214].
A UE configured to monitor PDCCH candidates in a serving cell with a DCI format size with carrier indicator field and CRC scrambled by C-RNTI, where the PDCCH candidates may have one or more possible values of carrier indicator field for the DCI format size, if capable, shall assume that an PDCCH candidate with the DCI format size may be transmitted in the serving cell in any PDCCH UE specific search space corresponding to any of the possible values of carrier indicator field for the DCI format size.
When in given slot, the number of configured PDCCH candidates results in number of blind decodes exceeding the UE’s capability, the PDCCH candidates with the smallest priority number  are dropped, until the number of blind decodes to be performed is within the UE’s capability. Only the UE-specific search space candidates are labelled with priority number, and the priority number is defined as .  When multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities. PDCCH candidate with a lowest L is dropped first and PDCCH candidate with a lowest search space set index s is dropped second. 
When in given slot, the number of configured PDCCH candidates results in number of CCE exceeding the UE’s channel estimation capability, the PDCCH candidates with the smallest priority number  are dropped, until the number of CCEs for which channel estimation is to be performed is within the UE’s capability. Only the UE-specific search space candidates are labelled with priority number, and the priority number is defined as .  When multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities, PDCCH candidate with a lowest L is dropped first and PDCCH candidate with a lowest search space set index s is dropped first.  When selected PDCCH candidate from search space s associated with CORESET p is dropped, all PDCCH candidates of search-spaces sets associated with CORESET p overlapping, at least partially, with the selected candidate are dropped. 





Revisiting the NR hashing function
In RAN#91, it was concluded that hashing function modification is one way to reduce the number of required BDs and CCEs to be channel estimated. 
The NR hashing function of LTE EPDCCH (currently supported) randomizes the allocation of the PDCCH candidates within the CORESET according to [8]

,
where
· L is the number of CCEs for the aggregation level (AL) the UE monitors,
· b is search-space offset for scheduling cell of CIF value equal to b,
·  is the total number of CCEs for the given p-th CORESET in subframe/TTI k,
· m is 0, 1, …, , where M is the number of PDCCH candidates for the aggregation level that the UE monitors,
·  is the nominal or maximum number of PDCCH candidates for the aggregation level,
· i (0, 1, …, ) is the contiguous CCE index of the PDCCH candidate,
·  is a pseudo-random variable based on the RNTI of the user and based on subframe index k (0, 1, …, 9), 
· p is for indication of a EPDCCH resource set, and
·  denotes the floor operation.
Randomized resource allocation is separate for each aggregation level L, and comes with a deterministic offset given by  between the first (m=0) and a further (m=1, 2, …, M-1) PDCCH candidate, with wrap-around over the full CORESET size. 
A particularity of LTE EPDCCH hashing function is that it can divide a CORESET into a number of  subbands and allocates a single PDCCH candidate within a subband, where only the starting point of the first (m=0) PDCCH candidate is randomized, while the allocation of the further (m=1, 2, …, M-1) PDCCH candidates is deterministic and approximately equidistant. If the CORESET is configured with non-interleaved CCE-to-REG mapping, this property enables the allocation of a PDCCH candidate in a frequency-selective manner.

This principle can be extended, such that the CORESET can be divided into  subbands, but the allocation of the PDCCH candidate within a subband is randomized. For this purpose, the generation of further pseudo-random numbers is required. Like with EPCCH hashing function, this procedure enables the allocation of a PDCCH candidate in a frequency-selective manner, but, as will be shown in Section 4, compared to EPDCCH hashing function it often results in significantly lower blocking probability.

The division of the CORESET into  subbands for aggregation level L can be expressed by the start points of the mth subbands, given by . Within the mth subband, the number of opportunities to pseudo-randomly allocate a PDCCH candidate is given by . By introducing the pseudo-random variable  to randomize the starting position within the subband, the following Hashing function is obtained:





where  provides the EPDCCH functionality of having the ‘starting subband /offset’ randomized for the candidate.



In case the specification would allow the number of sub-bands  to be larger than what the CORESET in number of CCEs could support (i.e. ), a further max{1,…} function is required to prevent zero as input to the modulo operator, and we obtain the hashing function as follows:


, (1)


with . The ECCE denoting the NR CCE.



An example for the allocation of PDCCH candidates with Hashing function (1) is illustrated in Figure 2 for , and = (6, 6, 2, 2) for aggregation levels L = (1, 2, 4, 8) and .


[image: ]

Figure 2: Example allocation of PDCCH candidates with Hashing function (1).

Concerning the generation of the pseudo-random numbers , we can apply similar approaches as known from LTE hashing functions, e.g. randomization along subframe numbers  can be carried out using the EPDCCH random generator [8]:
, for k = 0, 1, … 9,
with A = 39829, D = 65537 and , while randomization along the PDCCH candidates  can be carried out using another random generator, e.g. the one of LTE PDCCH [8]:
, for m = 1, 2, …, M-1, 

with A’ = 39827 and D = 65537.

Although the mathematical expressions appear different, the hashing function proposed in equation (1) should be considered a refinement of the hashing function of LTE EPDCCH. When setting  in (1), a uniform distribution of PDCCH candidates over the CORESET is obtained, and when excluding rounding effects by setting  an integer multiple of M times L, the very same set of PDCCH candidates is obtained as with LTE EPDCCH hashing function. 


Observation #3: The proposed hashing function is a refinement of the hashing function of LTE EPDCCH. 


We simulated the blocking performance of the proposed hashing function and the simulation results are shown in Appendix A. And we have the following observations:

Observation #4: For typical CORESET sizes, the proposed hashing function outperforms the hashing function of LTE EPDCCH by about one-two orders of magnitude in blocking probability.

Observation #5: For a targeted PDCCH blocking probability, the proposed hashing function allows to reduce the CORESET size by about 40% as compared to using the hashing function of LTE EPDCCH.

Observation #6: For a targeted PDCCH blocking probability, the proposed hashing function allows to reduce the number of blind decodes per USS per slot by about 50% and the number of channel estimates per USS per slot by about 30% as compared to using the hashing function of LTE EPDCCH.

Given the observations, we propose:

Proposal #10: To reduce the number of needed PDCCH candidates, size of needed CORESET, number of needed overall CCEs to achieve given blocking probability, adopt the hash function for NR-PDCCH given by equation (1).

38.213 Text proposal
	

For a search space set s, the CCEs corresponding to PDCCH candidate  of the search space for a serving cell corresponding to carrier indicator field value  are given by 


where

for any common search space,; 





for a UE-specific search space,, , , , and ;

;


 is the carrier indicator field value if the UE is configured with a carrier indicator field for the serving cell on which PDCCH is monitored; otherwise, including for any common search space, ;



 is the number of CCEs, numbered from 0 to , in control resource set ; 




, where  is the number of PDCCH candidates the UE is configured to monitor for aggregation level  for a serving cell corresponding to ; 

for any common search space, ; 





for a UE-specific search space, is the maximum of  for all corresponding DCI formats over all configured  values for a CCE aggregation level  in  search space set s in control resource set ;

the RNTI value used for  is defined in [5, TS 38.212] and in [6, TS 38.214].



For a search space set s, the CCEs corresponding to PDCCH candidate  of the search space for a serving cell corresponding to carrier indicator field value  are given by 

,
where
  for , and



,  , , and , else;

for any common search space,; 





for a UE-specific search space,, , , , and ;

;


 is the carrier indicator field value if the UE is configured with a carrier indicator field for the serving cell on which PDCCH is monitored; otherwise, including for any common search space, ;



 is the number of CCEs, numbered from 0 to , in control resource set ; 




, where  is the number of PDCCH candidates the UE is configured to monitor for aggregation level  for a serving cell corresponding to ; 

;

for any common search space, ; 





for a UE-specific search space, is the maximum of  for all corresponding DCI formats over all configured  values for a CCE aggregation level  in search space set s in control resource set ;

the RNTI value used for  is defined in [5, TS 38.212] and in [6, TS 38.214].




Conclusions
In this contribution, we have discussed remaining details of search space design for NR-PDCCH. Based on the discussion, we make the following observations and proposals:
Observation #1: When a gNB serves multiple services with different PDCCH monitoring periodicity, the infrequent monitoring peaks may occur. The gNB should be allowed to over-book BDs during these infrequent peaks, to avoid BD restrictions in other monitoring occasions.   
Observation #2: If CCE overbooking would not be allowed and CCE limitation would be set to 48 CCE, gNB would not be able to configure single CSS (0, 0, 4, 2, 0) and single USS (6, 6, 2, 2, 0) in a CORESETs larger than 48CCE. 

Observation #3: The proposed hashing function is a refinement of the hashing function of LTE EPDCCH. 

Observation #4: For typical CORESET sizes, the proposed hashing function outperforms the hashing function of LTE EPDCCH by about one-two orders of magnitude in blocking probability.

Observation #5: For a targeted PDCCH blocking probability, the proposed hashing function allows to reduce the CORESET size by about 40% as compared to using the hashing function of LTE EPDCCH.

Observation #6: For a targeted PDCCH blocking probability, the proposed hashing function allows to reduce the number of blind decodes per USS per slot by about 50% and the number of channel estimates per USS per slot by about 30% as compared to using the hashing function of LTE EPDCCH.

Proposal #1: NR supports search-space-set configurations that may result in over-booking BDs and CCEs in a slot.
· FFS: How to reduce the PDCCH BDs down to the allowed level for over-booked monitoring occasions.  

Proposal #2: BD dropping in a serving cell is based on the predefined rules and it should not introduce additional RRC signaling.

Proposal #3: BD dropping in a serving cell is applied only for UE-specific search space sets

Proposal #4: BD dropping in a serving cell is based on predefined BD priority number .

Proposal #5: When there is a need for BD dropping in a slot, PDCCH candidates to be dropped are defined according to the smallest  within all the involved search space sets subject to BD dropping. If multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities:
· PDCCH candidate with a lowest AL L is dropped first
· PDCCH candidate with a lowest search space set priority is dropped first. Search space set priority is derived implicitly from the search space set ID s.

Proposal #6: If CCE reduction scheme is defined according to Opt1, strive for a common solution for BD reduction and CCE reduction.
Proposal #7: In the proposed CCE reduction scheme, UE drops one PDCCH candidate after another according to the BD priority number, until the CCE cap is reached. If CCEs of selected candidate is dropped, also other candidates fully or partially overlapping with the CCE(s) are dropped.  

Proposal #8: Consider a rule where predefined CCEs such as CCEs belonging to TYPE0 and TYPE0A are never dropped.

Proposal #9: In the cases when the need for CCE reduction exists at the same time with the need for BD reduction, perform BD reduction first.

Proposal #10: To reduce the number of needed PDCCH candidates, size of needed CORESET, number of needed overall CCEs to achieve given blocking probability, adopt the hash function for NR-PDCCH given by equation (1).


In addition to observations and proposals, we have two text proposals to capture the proposals in TS 38.213 (see Section 2).
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Appendix A – Impact of hashing function design on PDCCH blocking
The PDCCH blocking probability was assessed by means of exhaustive search for different hashing functions. The number of users allocated within the CORESET is predefined (either 2, 3, 4, or 5 users) and the RNTIs are selected randomly. For either of the selected users, an aggregation level is selected randomly for a period of 10 subframes. (The term subframe may here refer to a subframe in LTE or a slot in NR.) It is assumed that a single DCI is transmitted per user per subframe with the selected aggregation level, and the occurrence of blocking is checked separately for all the subframe indices k = 0, 1, …, 9. Blocking occurs for the selected users within a subframe if after exhaustive search over all allocation options at least two PDCCH candidates have at least partial overlap. The results provide a lower bound of the PDCCH blocking probability, assuming a smart strategy to allocate the PDCCH candidates by gNB. In a practical network implementation, the PDCCH blocking probability may be higher, depending on the candidate allocation algorithms implemented by gNB. The presented results do not take into account the possibility that a user transmits multiple DCIs within a subframe. The presented results on PDCCH blocking probability extend the previous results provided in [8], the results presented in this document also include the possibility to fall back to a higher aggregation level in the case of blocking.

We use the following default settings:
· CORESET size of 32,64,96 CCEs,
· Aggregation levels (1, 2, 4, 8) with probabilities of occurrence given by (0.4, 0.3, 0.2, 0.1) [9],
· Number M of candidates for aggregation levels (1, 2, 4, 8) is (6, 6, 2, 2) as with LTE PDCCH [8],
· Hashing functions of LTE PDCCH, LTE EPDCCH, as well as randomized allocation in M subbands according to equation (1).


[bookmark: _GoBack]Figures 3, 4 and 5 depict the simulated PDCCH blocking probabilities with CORESETs comprising 32, 64 and 96 CCEs, respectively, both without (solid) and with (dashed) fall-back to a higher aggregation level in the case of blocking. Apart from the CORESET sizes, the default simulation assumptions are applied.

It can be seen that applying fall-back to a higher aggregation level significantly decreases the PDCCH blocking probabilities, with the improvement depending on the hashing function and on the CORESET size. It can further be seen that with fall back to a higher aggregation level, the hashing function of LTE EPDCCH results in highest blocking probabilities among the investigated hashing functions, while the proposed hashing function of equation (1) outperforms the hashing function of LTE EPDCCH by ~1-2 orders of magnitude in blocking probability, the gains increasing with increasing CORESET size.

It should be noted that such significant reduction in blocking probability can reduce control signalling overhead, since for a targeted PDCCH blocking probability the CORESET size can be reduced. For example, to achieve a blocking probability of 0.1% with 5 users (one DCI per user), the hashing function of LTE EPDCCH would require the configuration of a CORESET comprising 96 CCEs. With the hashing function of equation (1), in contrast, the CORESET would require about 56 CCEs, thus reducing the CORESET size by ~40%. The reduction of the CORESET size may further reduce battery consumption of the UE since less channel estimates for PDCCH blind decoding are required.


[image: ]
Figure 3: PDCCH blocking probabilities with CORESET comprising 32 CCEs, without (solid) and with (dashed) fall-back to a higher aggregation level in the case of blocking.

[image: ]
Figure 4: PDCCH blocking probabilities with CORESET comprising 64 CCEs, without (solid) and with (dashed) fall-back to a higher aggregation level in the case of blocking.

[image: ]
Figure 5: PDCCH blocking probabilities with CORESET comprising 96 CCEs, without (solid) and with (dashed) fall-back to a higher aggregation level in the case of blocking.


The gains in blocking probability obtained with the proposed hashing function can also be used for reducing the number of blind decodes and channel estimates performed by the UE per slot. As an example, Figure 6 depicts the simulated PDCCH blocking probabilities with fall-back to a higher aggregation level in the case of blocking. In Figure 6, the number M of candidates for aggregation levels (1, 2, 4, 8) is set to (6, 6, 2, 2) (solid) and (2, 2, 2, 2) (dashed). Apart from the number of candidates, the default simulation assumptions are applied. It can be seen that the proposed hashing function outperforms the hashing function of LTE EPDCCH by about one order of magnitude in blocking probability, also when reducing the number of blind decodes for USS per slot by ~50% (16 vs. 32), and the number of channel estimates for USS per slot by ~30% (30 vs. 42).

[image: ]

Figure 6: PDCCH blocking probabilities with CORESET comprising 64 CCEs, with fall-back to a higher aggregation level in the case of blocking, and with numbers (6, 6, 2, 2) (solid) and (2, 2, 2, 2) (dashed) for aggregation levels (1, 2, 4, 8).
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