Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk485222552]3GPP TSG RAN WG1 Meeting NR#3	R1- 1715737
Nagoya, Japan, 18th – 21st, September 2017

Source:	Ericsson
Title:	Polar Code Construction for DL
Agenda Item:	6.4.2.1
Document for:	Discussion and Decision
1 Introduction
In RAN1#90, the following working assumption [1] was made:
Working Assumption:
· Denote the input to the CRC computation by u0, u1, u2, …, uL-1, and the parity bits by p0, p1, p2, …, p23. The parity bits are generated by the following cyclic generator polynomial:
· gCRC24(D) = [D24+D23+D21+D20+D17+D15+D13+D12+D8+D4+D2+D+1]
· After CRC calculation, the bits which will be fed into an interleaver are denoted by v0, v1, v2, …, vKmax+23, which fulfils:
· vk = uL-1-k		 for k = 0, 1, 2, …, L-1.
· vk = <NULL>	for k = L, L+1, L+2, …, Kmax-1.
· vk = pk-Kmax		for k = Kmax, Kmax+1, …, Kmax+23.
· where Kmax = max(140, max DCI payload size in Rel-15 + 20), and Kmax + CRC length is the size of the interleaver.
· Then v0, v1, v2, …, vKmax+23 is fed to the interleaver. Denote the output of the interleaver is w0, w1, w2, …, wKmax+23. The relationship between the input and output of the interleaver is as follows:
· wk = vΠ(k)		for k = 0, 1, 2, …, Kmax+23,
· where the pattern is the pattern for nFAR=21 in R1-1712167.
· If problems are identified with this pattern, companies can propose modifications to the polynomial and/or interleaver pattern at NR AH#3, keeping the modifications as minimal as possible.

As pointed out in [4], the pre-processing steps described in R1-1712167 [2] are different from those in the working assumption (WA) described above. Consequently, the interleaver pattern as presented in [2] per WA does not work well with the pre-processing steps described in WA. In this contribution, we examine the difference between the pre-processing steps of WA and those of [2]. In addition, we propose modifications to the interleaver patterns that simplify its implementation while maintaining the early termination gain to a large extend.
2 Comparison of Pre-processing
In [2] , the operations of the interleaver are summarized by the descriptions:
Assume that the bit sequence input for a given code block to channel coding is denoted by , where (=K+Lcrc) is the number of bits to be encoded (including CRC), and the interleaver is denoted by sequence .
i) The bit sequence input is extended to by:
			for ,
 		for .
ii) Interleave by an interleaving pattern π: .
iii) Remove the () NULL-bit from to have the interleaved output bit stream

The following table matches the corresponding notations between WA and R1-1712167 [2].

	ITEMS
	R1-1712167 [2]
	Working Assumption [1]

	Number of information bits
	
	

	Number of CRC bits
	
	24

	Total number of input bits
	
	

	Max. number of input bits
	
	

	Information bits
	
	

	CRC parity bits
	
	

	Input of interleaver (after NULL addition)
	
	

	Output of interleaver (before NULL removal)
	
	

Table 1. CRC polynomial and corresponding interleaver for UL with K+nFAR>22

According to [2], the input to the interleaver after the pre-processing steps can be depicted in Figure 1.

Figure 1. Input to interleaver according to [2] based on notation of [2].

Using the notation in WA [1], the interleaver input in Figure 1 translates into Figure 2 below.

Figure 2. Input to interleaver according to [2] based on notation of [1].

On the other hand, from the pre-processing described in WA [1], the input to the interleaver can be depicted in Figure 3.

Figure 3. Input to interleaver according to [1] based on notation of [1].

Comparing Figure 2 and Figure 3, it is clear that the input to the interleaver after the pre-processing steps of WA[1] is different from that after the pre-processing steps of R1-1712167 [2]. Hence, interleaving patterns of [1] should not be use directly without modification with the pre-processing steps in WA.

Observation 1 [bookmark: _GoBack]Without modifications, interleaving patterns in R1-1712167 [2] are incompatible with the pre-processing steps in WA [1].

Moreover, from Figure 2 and Figure 3, it is also clear that the main difference between the input to interleaver generated by [1] and that of [2] is the flipping of the content in . This can be attributed to the first pre-processing step of WA [1]. Since flipping is an invertible operation, the achievable performance from the two sets of pre-processing steps is the same. In other words, for each interleaver pattern designed based on [1], there is a corresponding interleaver based on [2] that yields the same performance. However, the flipping step unnecessarily complicates the interleaving operations without providing any benefits.

Observation 2 Interleaver patterns designed based on R1-17112167 [2] can be related to those designed based on WA [1] through flipping of the first element of the interleaver input.

Observation 3 The flipping operation in the first step in WA [1] is unnecessary and complicates the implementation.

Thus, we have the following proposal:
1. Adopt the pre-processing steps in R1-17112167 [2] with optimized interleaver pattern.

3 Interleaver Patterns
Here we consider the design of interleaver patterns based on the pre-processing steps in R1-1712167. Per WA [1], the CRC polynomial for downlink is assumed to be:

The distributed CRC bits (i.e. those CRC bits distributed in the mist of information bits) as selected by the interleaver pattern proposed in [1] are simply taken naturally from the beginning of the block of CRC bits. Although this is simple, it does not necessarily optimize the potential early termination gain, which is the main motivation of adding the CRC interleaver. Early termination gain can be optimized by judiciously selecting the distributed CRC bits that can be moved as close to the front in the decoding order as possible so that each distributed CRC bit only depend on information bits that are previously decoded.

Furthermore, as most of the early termination gain can be achieved with only the first 3 or 4 distributed CRC bits, one can limit the number of distributed CRC bits in the interleaver pattern while maintaining the same early termination gains. In general, with distributed CRC bits, the interleaver can be implemented as a partition of the bits into groups, each group consisting of a sequence of information bits followed one CRC bit or more (the last group). A small value of results in a small number of these groups, which in turn can be exploited to reduce the implementation complexity. For example, with bits, the entire interleaver pattern can be stored by only
Storage bits.

In contrast, a straightforward storage of a unstructured interleaver pattern requires bits.

For example, for , interleaver patterns with limited number (3 and 4) of distributed CRC bits can be obtained as shown below. The CRC parity bits are highlighted in red.

Interleaver Pattern with 3 Distributed CRC Bits:
 [0 3 6 9 11 12 13 14 15 17 18 19 21 22 28 29 30 37 38 42 43 48 53 57 59 64 65 66 69 71 72 73 78 79 91 92 97 106 111 114 117 119 122 125 126 127 128 130 131 134 136 137 144 1 4 7 10 16 20 23 31 39 44 49 54 58 60 67 70 74 80 93 98 107 112 115 118 120 123 129 132 135 138 145 2 5 8 24 32 40 45 50 55 61 68 75 81 94 99 108 113 116 121 124 133 139 146 25 26 27 33 34 35 36 41 46 47 51 52 56 62 63 76 77 82 83 84 85 86 87 88 89 90 95 96 100 101 102 103 104 105 109 110 140 141 142 143 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163];

Interleaver Pattern with 4 Distributed CRC Bits:
 [0 3 6 9 11 12 13 14 15 17 18 19 21 22 28 29 30 37 38 42 43 48 53 57 59 64 65 66 69 71 72 73 78 79 91 92 97 106 111 114 117 119 122 125 126 127 128 130 131 134 136 137 144 1 4 7 10 16 20 23 31 39 44 49 54 58 60 67 70 74 80 93 98 107 112 115 118 120 123 129 132 135 138 145 2 5 8 24 32 40 45 50 55 61 68 75 81 94 99 108 113 116 121 124 133 139 146 26 33 34 41 46 77 83 87 88 89 100 101 104 109 110 147 25 27 35 36 47 51 52 56 62 63 76 82 84 85 86 90 95 96 102 103 105 140 141 142 143 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163];

Each of these interleaver patterns consists of a limited number (3 or 4) of those distributed CRC bits that can be moved as close as possible to the front of the decoding order so as to maximize the latency reduction by early termination. In the two examples above, these distributed CRC bits are also in consecutive order.

For the first interleaver pattern with 3 distributed bits, the entire pattern can be derived from the sequence with the alphabet {0, 1, 2, 3}:

[0 1 2 0 1 2 0 1 2 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 2 3 3 3 0 0 0 1 2 3 3 3 3 0 0 1 2 3 0 0 1 2 3 3 0 1 2 3 3 0 1 2 3 0 1 0 1 2 3 3 0 0 0 1 2 0 1 0 0 0 1 2 3 3 0 0 1 2 3 3 3 3 3 3 3 3 3 0 0 1 2 3 3 0 1 2 3 3 3 3 3 3 0 1 2 3 3 0 1 2 0 1 2 0 1 0 1 2 0 1 2 0 0 0 0 1 0 0 1 2 0 1 0 0 1 2 3 3 3 3 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3];

1. Adopt interleaver patterns with 3 or 4 distributed CRC bits.

4 Conclusions
In this contribution, we made the following observations and proposals:

Observation 1 Without modifications, interleaving patterns in R1-1712167 [2] are incompatible with the pre-processing steps in WA [1].

Observation 2 Interleaver patterns designed based on R1-17112167 [2] can be related to those designed based on WA [1] through flipping of the first element of the interleaver input.

Observation 3 The flipping operation in the first step in WA [1] is unnecessary and complicates the implementation.

Proposal 1 Adopt the pre-processing steps in R1-17112167 [2] and correspondingly optimized interleaver pattern.

Proposal 2 Adopt interleaver patterns with 3 or 4 distributed CRC bits.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref492914915]“RAN1 Chairman’s Notes”, 3GPP TSG RAN WG1 Meeting #90, Prague, Czech Republic 21st – 25th August 2017.
[bookmark: _Ref492924868]R1-1712167, “Distributed CRC for Polar code construction,” 3GPP TSG RAN WG1 Meeting #90, Prague, Czech Republic 21st – 25th August 2017.
R1-1714377, “Distributed CRC Polar code construction,” 3GPP TSG RAN WG1 Meeting #90, Prague, Czech Republic 21st – 25th August 2017.
[bookmark: _Ref492921123]Samsung, Email discussions, September 5, 2017.
	4/6	
image1.emf
NullNullNullNullNullc0c1cK-1cKcK+1cK’+1.x0x0x1x2x3xK -K’-1PxK -K’PxK -1P….….xK -K’+1PxK -1maxxK maxxK +1max….

Microsoft_Visio_Drawing.vsdx
Null
Null
Null
Null
Null
c0
c1
cK-1
cK
cK+1
cK’+1
. . . .
. . . .
. . . .
x0
x0
x1
x2
x3
xK -K’-1
P
xK -K’
P
xK -1
P
….
….
xK -K’+1
P
xK -1
max
xK
max
xK +1
max
….

image2.emf
NullNullNullNullNullu0u1uL-1p0p1p23.x0v0v1v2v3vK -L-1….maxvK -LmaxvK -L+1max….vK -1maxvK maxvK +1max….vK +23max

Microsoft_Visio_Drawing1.vsdx
Null
Null
Null
Null
Null
u0
u1
uL-1
p0
p1
p23
. . . .
. . . .
. . . .
x0
v0
v1
v2
v3
vK -L-1
….
max
vK -L
max
vK -L+1
max
….
vK -1
max
vK
max
vK +1
max
….
vK +23
max

image3.emf
uL-1uLu0. . . . NullNullNullNullNull. . . .x0v0v1….vL-1vLvL+1….vK -1maxp0p1p23. . . .vK maxvK +1max….vK +23max

Microsoft_Visio_Drawing2.vsdx
uL-1
uL
u0
. . . .
Null
Null
Null
Null
Null
. . . .
x0
v0
v1
….
vL-1
vL
vL+1
….
vK -1
max
p0
p1
p23
. . . .
vK
max
vK +1
max
….
vK +23
max

