3GPP TSG RAN WG1 NR Ad-Hoc #2 R1-1711535
Qingdao, P.R. China 27th – 30th June 2017

Agenda item:		5.1.4.1.1.2
Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Padding for LDPC
Document for:		Decision
1	Introduction
In Ran1 #NR ad-Hoc meeting [1], padding (shortening) for LDPC was discussed and the following agreement was made,
Agreement:
· Shortening is applied before LDPC encoding when necessary
· Working assumption: Filler bits F are attached at the end of info block B to form vector U = [B F]
· Can be verified at RAN1#88
· Vector U is the input to LDPC encoding
· The filler bits F are not transmitted

In this contribution, we discuss the required attention when deciding the filler bit positions.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2	Padding (shortening)
Padding is often considered when the info block size at the encoder does not satisfy required block size to encode. As NR LDPC codes do not support very fine granularity of block sizes with their shift network, the padding overhead can be higher. This kind of padding overheads often create extra latency/power at the encoder and decoder. Code block segmentation methods can try to solve such concerns for some extent [1], however, some amount of padding will be there in any case.

Figure 1: Padding to support encoding process
2.1	Zero padding
[bookmark: _GoBack]Zero padding is the most practical method of padding, and commonly used by many other standards. In particular, the padding bits showed in Figure 1 are set to be zero bits. In most cases, these bits are punctured after encoding. These zero padding bits also increases the amount of parity bits, where we may have to puncture some bits in addition to the padded bits if we need to maintain exact spectral efficiency. At the decoder, we add these punctured zero padding bits with matching LLRs which often set as max/min LLR values. Zero padding can be applied to NR eMBB scenario when the number of CBs are small, padding overhead is significant, and simple operations are required.
2.1.1 	Position of padding bits
The working assumption says that the Filler bits, F, are attached at the end of info block B. In the following, we check the effect of padding bit position for QC-LDPC codes. We consider the following base graph:
 -1 37 7 -1 -1 41 12 47 23 25 1 0 -1 -1 -1
 0 38 -1 -1 -1 -1 -1 6 -1 34 -1 0 0 -1 -1
 31 29 25 34 -1 -1 -1 -1 29 8 0 -1 0 0 -1
 11 24 -1 43 41 5 -1 -1 -1 -1 -1 -1 -1 0 0
 2 -1 28 24 13 -1 13 -1 47 7 1 -1 -1 -1 0

with submatrix size z = 52, defining a code with (n,k) = (780,520). We note that the column weights of the first 10 columns are [4 4 3 3 2 2 2 2 3 4].
We simulate this code with the z padding bits. This shortens the code to (n,k) = (728,468). The simulation is repeated for 10 different patterns for padding bit positions:
Pattern 1: [F B1 B2 B3 B4 B5 B6 B7 B8 B9]
Pattern 2: [B1 F B2 B3 B4 B5 B6 B7 B8 B9]
Pattern 3: [B1 B2 F B3 B4 B5 B6 B7 B8 B9]
Pattern 4: [B1 B2 B3 F B4 B5 B6 B7 B8 B9]
Pattern 5: [B1 B2 B3 B4 F B5 B6 B7 B8 B9]
Pattern 6: [B1 B2 B3 B4 B5 F B6 B7 B8 B9]
Pattern 7: [B1 B2 B3 B4 B5 B6 F B7 B8 B9]
Pattern 8: [B1 B2 B3 B4 B5 B6 B7F B8 B9]
Pattern 9: [B1 B2 B3 B4 B5 B6 B7 B8 F B9]
Pattern 10: [B1 B2 B3 B4 B5 B6 B7 B8 B9 F]

In the patterns above, F denotes z padding bits, and each Bd (d = 1, 2 …, 9) is a set of z information bits. Results are shown in Figure 2. Legend shows the pattern, and the column weight of the padding bits is shown next to each curve. The best performance is obtained when the padding bits are located in a column with weight 2.
[image:]
[bookmark: _Ref473291983]Figure 2: Performance of different padding bit positions; number of padding bits = z.

It is quite evident that the performance varies with the position of the shortening that we use. More importantly, appending padding bits at the end (Pattern 10) is not the optimal position to apply padding. For the base matrix we used for this simulation, Pattern 7 provides the best performance. However, this will change with different base matrix assumptions. Considering many other evaluations, we see that attaching padding bits on the positions with smaller column weights provide much better performance than the rest. In summary, the following observation can be made:
Observation 1: The optimal position of the padding bits is where the column weight of PCM is small.
Based on the latest LDPC base matrix discussions, we see that variation of column weights are not arranged to the best form to support padding at the end of info block.
For example: rate 1/3 of the base matrix 1 has the following distribution
Column				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Weight				30	28	7	11	9	4	8	12	8	7	12	10	12	11	10	7	10	10	13	7	8	11
If the padding positions are not optimized in the proposed LDPC base graphs, it would be good to check this further after base graphs are finalized. When the best position for padding is investigated, the column permutation should be performed to make sure that the padding can be performed done at the end of the information block size.
Proposal 1: Padding bit positions should be taken into account when finalizing the base graphs to the spec, where column permutation on the base matrix may be required.

3	Conclusion
In this contribution, we discussed padding for LDPC codes and we have following observation and proposal,

Observation 1: The optimal position of the padding bits is where the column weight of PCM is small.
Proposal 1: Padding bit positions should be taken into account when finalizing the base graphs to the spec, where column permutation on the base matrix may be required.
References
[1] Ran1 Chairman’s notes, Ran1 #NR Ad-Hoc, Spokane, U.S.A.
image1.emf
Infopadding bits

Encoder

Infopadding bits

parity bits

oleObject1.bin
Encoder

Info

padding bits

Info

padding bits

parity bits

image2.emf
0.30.40.50.60.70.80.911.11.2

10

-2

10

-1

SNR (dB)

BLER

1

2

3

4

5

6

7

8

9

10

2

2

2

2

3

3

3

4

