3GPP TSG RAN WG1 NR Ad-Hoc#2 					 	 R1-1711534
Qingdao, P.R. China, 27th – 30th June 2017

Agenda item:		5.1.4.1.1.2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Code block segmentation of eMBB
Document for:		Decision
1 	Introduction
In RAN1 #89 meeting, the following agreement was made on code segmentation [1].
Agreement:
· FFS: how CB sizes are determined within a TB
· One of the following approaches will be selected at June Ad-hoc for determining the Z values of code blocks within a TB:
· Alt 1. Same value of Z
· Alt 2. At most two different values of Z for a given TB
In this contribution, we share our views on code segmentation of eMBB.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2. Code segmentation for eMBB
The details of realization for both alternatives (Alt 1 and Alt 2) are provided in this contribution. Later, a comparison between two schemes are made from the view of performance and transmission efficiency.
2.1		Steps of code segmentation
Supported Z values of eMBB were agreed in Ran1 #88bis and set of shift sizes are agreed in the Ran1 #89 email discussions [89-24]. Two alternatives can be mainly differentiated from the number of different Z values used in the segmentation, it would be good to see the details of segmentation when using both options separately.
Alt 1: Same value of Z
The input bit sequence to the code block segmentation has the size of B. Total number of code blocks C is determined by:
For a given code rate, total number of code blocks C is determined by:

if
	L = 0 % CB level CRC

	Number of code blocks:

	
else
	L = LCB,CRC %(To be determined according to further discussions)
 Lcbg = LCBG,CRC %(To be determined according to further discussions)
	Number of code block groups: G
	Number of code blocks:
	
end if

The bits output from code block segmentation, for C 0, are denoted by , where r is the code block number, and Kr is the number of bits for the code block number r.
Number of bits including bits output for code block segmentation and filler bits in each code block for LDPC encoding (applicable for C 0 only):

segmentation size: = minimum K in table 1 such that

Totally number of filler bits: .
The input bit sequence to the code block segmentation and filler bits can be almost equally segmented among C code blocks, respectively (LTE principle).

Alt 2: At most two different values of Z for a given TB

if
	L = 0 % CB level CRC

	Number of code blocks:

	
else
	L = LCB,CRC % (To be determined according to further discussions)
 Lcbg = LCBG,CRC % (To be determined according to further discussions)
	Number of code block groups: G
	Number of code blocks:
	
end if

The bits output from code block segmentation, for C 0, are denoted by , where r is the code block number, and Kr is the number of bits for the code block number r.
Number of bits including bits output for code block segmentation and filler bits in each code block for LDPC encoding (applicable for C 0 only):

First segmentation size: = minimum K in table 1 such that

if

		the number of code blocks with length is =1, ,

else if

			Second segmentation size: = { K_1, K_2,…, K_T} in table 1 such that

 (For special case:= maximum K in table 1 such that)
 For t=1:T

Number of segments of size: .

Number of segments of size: .

Number of filler bits:
End

Find the selected segmentation size with smallest Fts,

Number of segments of size is

Number of segments of size:

Number of filler bits:
	end if
The input bit sequence to the code block segmentation and filler bits can be equally segmented among C code blocks or proportionally segmented among C code blocks according to code block size, respectively.

Table 1: K value with limited Z
	Z
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	K
	44
	66
	88
	110
	132
	154
	176
	198
	220
	242
	264
	286
	308

	Z
	15
	16
	18
	20
	22
	24
	26
	28
	30
	32
	36
	40
	44

	K
	330
	352
	396
	440
	484
	528
	572
	616
	660
	704
	792
	880
	968

	Z
	48
	52
	56
	60
	64
	72
	80
	88
	96
	104
	112
	120
	128

	K
	1056
	1144
	1232
	1320
	1408
	1584
	1760
	1936
	2112
	2288
	2464
	2640
	2816

	Z
	144
	160
	176
	192
	208
	224
	240
	256
	288
	320
	352
	384
	

	K
	3168
	3520
	3872
	4224
	4576
	4928
	5280
	5632
	6336
	7040
	7744
	8448
	

2.2	Performance
Even though the large number of padding overhead that we may see with the Alt. 1, people may think that it is best performing scenario for code block segmentation. However, as these block sizes always appear above 5K-6K, the performances are quite similar. In fact, we see that Alt.2 seems to perform slightly better.
Next, we provide some evaluation examples to show this observation. The simulation results for two code rates, 8/9 and 1/2, with two CBS, 4224 and 7744, are given in Fig.1, where the PCM designed in [2] are used. From the simulation results, we can see that almost 0.02dB performance degradation can be caused by the limitation of the same z for all CBs. The reasons for the difference may be due to:
(1) Associated PCMs;
(2) Different number of systematic punctured bits,
(3) Different number of parity bit puncturing to achieve the same code rate.
[image:][image:]
Fig.1: Performance variation when information block is supported with larger CBS with padding
In Fig.2, the TB level BLER is evaluated for both alternatives with special realization schemes. For example, let’s assume the case with TB has 16192 bits for transmission. With Alt.1, it will use 2 CBs with size 8448 for transmission, where each CBS is 8096. With Alt.2, it can be transmitted with one CB with 8448 and one CB with 7744, where the information bit number for each CB is 8448 and 7744, respectively. From the evaluation results on different information bit number based on PCM [2], we can see that the Alt.2 can have 0.02-0.05dB performance gain in these cases. However, in general, both schemes have similar performance on account of all the code segmentation cases.
[image:]
Fig.2 : TB level BLER performance comparison between two alternatives
Observation 1: Alt.2 seems have a slightly better performance compared to Alt.1 in the cases with larger padding overhead.
2.3 	Implementation efficiency
As we have limited Z values, some CBs can be encoded/decoded with a PCM supporting larger CBS than required. Although it may not cause remarkable performance loss, too much padding bits have an adverse impact on the implementation efficiency. In detail, when encoding and decoding happen with a larger CB size, it increases overall complexity not only in the encoding/decoding stages but also in the realization for rate matching.
To simply illustrate this issue, we import one metric “Redundancy ratio” which is defined as the ratio between input bit number difference for LDPC encoder of two alternatives and actual information bit number. For example, consider TBS as 23936. For Alt.1, CB size for LDPC encoder is 8448, and Z is 384 for each CB. For Alt.2, CB size for LDPC encoder is 7744, 7744, 8448 and Z is 352, 352, 384 for each CB, respectively. Redundancy ratio caused by Alt.1 equals (8448*3-7744*2-8448)/23936. In Fig.3, the redundancy ratio is given for the cases with different code block number and information bit number being multiple CB block size combination. Based on numeral evaluation results, the Alt.1 has 3.2%-11.6% redundancy relative to Alt.2 in the worst cases. Furthermore, the redundancy ratio is increased with increased code block number. The redundancy ratio is higher when Z granularity is switched. For example, Z=256 has larger redundancy since the Z granularity is changed to 32 relative to Z = 224 with 16.
[image:]
Observation 2: Alt.1 has at most 11.6% redundancy compared with alt.2. Alt. 2 has better implementation efficiency relative to Alt.1.
Similarly, Alt.2 may cause extra latency due to the additional steps that rate matching has to follow. In particular, padding bits that include before the encoding step should be punctured after encoding. Moreover, some amount of parity bits gets punctured to support the exact code rate. This also happens at the decoder side, and cause extra latency for the transmission.
Proposal 1: Considering performance, implementation complexity, and latency benefits, Alt.2 shall be selected as the code segmentation method.
3 	Conclusions
Based on above discussion. We also make the following proposals and observations:
Observation 1: Alt.2 seems have a slightly better performance compared to Alt.1 in the cases with larger padding overhead.
Observation 2: Alt.1 has at most 11.6% redundancy compared with alt.2. Alt. 2 has better implementation efficiency relative to Alt.1.
Proposal 1: Considering performance, implementation complexity, and latency benefits, Alt.2 shall be selected as the code segmentation method.
[bookmark: _GoBack]References
[1] 3GPP RAN1 #88bis Chairman Notes.
[2] R1-1709189, “Performance of LDPC design for eMBB”,	Nokia, Alcatel-Lucent Shanghai Bell
image1.wmf
max

K

B

£

oleObject1.bin

image2.wmf
1

=

C

oleObject2.bin

image3.wmf
B

B

=

¢

oleObject3.bin

image4.wmf
(

)

1

3

2

1

0

,...,

,

,

,

-

r

K

r

r

r

r

r

c

c

c

c

c

oleObject4.bin

image5.wmf
K

oleObject5.bin

image6.wmf
B

K

C

¢

³

×

oleObject6.bin

image7.wmf
B

K

C

F

¢

-

×

=

oleObject7.bin

oleObject8.bin

oleObject9.bin

oleObject10.bin

oleObject11.bin

image8.wmf
+

K

oleObject12.bin

oleObject13.bin

image9.wmf
1

=

C

oleObject14.bin

image10.wmf
+

K

oleObject15.bin

image11.wmf
+

C

oleObject16.bin

image12.wmf
0

=

-

K

oleObject17.bin

image13.wmf
0

=

-

C

oleObject18.bin

image14.wmf
1

>

C

oleObject19.bin

image15.wmf
-

K

oleObject20.bin

image16.wmf
+

<

K

K

t

_

oleObject21.bin

oleObject22.bin

image17.wmf
+

<

K

K

oleObject23.bin

image18.wmf
t

K

K

K

-

-

=

D

+

oleObject24.bin

image19.wmf
t

K

-

oleObject25.bin

image20.wmf
ú

û

ú

ê

ë

ê

D

¢

-

×

=

+

-

K

t

B

K

C

C

oleObject26.bin

image21.wmf
+

K

oleObject27.bin

image22.wmf
t

t

C

C

C

-

-

=

+

oleObject28.bin

image23.wmf
B

K

C

K

C

F

t

t

t

t

¢

-

×

+

×

=

-

-

+

+

oleObject29.bin

image24.wmf
ts

K

-

oleObject30.bin

image25.wmf
ts

K

-

oleObject31.bin

image26.wmf
ts

C

-

oleObject32.bin

oleObject33.bin

image27.wmf
ts

ts

C

C

C

-

-

=

+

oleObject34.bin

image28.wmf
B

K

C

K

C

F

ts

ts

ts

ts

¢

-

×

+

×

=

-

-

+

+

oleObject35.bin

image29.png

image30.png

image31.png

image32.png

