[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]3GPP TSG RAN WG1 Meeting AH#2 	 R1-1711436
Qingdao, P.R. China, 27th – 30th June 2017

Agenda Item:	5.1.4.1.2
Source:	Huawei, HiSilicon
Title:	LDPC design for base graph 1
Document for:	Discussion and Decision

Introduction
In the RAN1#89 meeting the following agreements were reached [1]:
Agreement:
· For base graph #1:
· The dimensions of the base matrix are 68 columns, 46 rows (to support R=1/3)
· Seven 46x68 base matrices are identified as the set of candidates:
· Provided in the excel file R1_1709751.xlsx in R1-1709751 as Candidates A to G.
· By constructive email discussion until Thursday 1st June, agree (from the set of candidates or a merged solution), for evaluation and downselection until June adhoc:
· a single 46x68 base matrix,
· the set of shift sizes

In this contribution we discuss an irregular QC LDPC code using BG1 agreed in email discussion [2] with corresponding PCMs and lifting table.
Description for LDPC rate matching
Single parity check (SPC) extension is a common method for LDPC to realize rate matching which is called Raptor-like structure or Nested Base graph structure. This method has been adopted by several companies in the last several meetings. It starts from a high rate LDPC core graph with dual-diagonal exponent matrix structure. To achieve lower rate, the high rate core graph is extended with one single parity check equation and one parity bit at a time.
Proposed LDPC Design
We use Quasi-Cyclic (QC) LDPC codes with QC parity-check matrices, where each circulant is either a circulant permutation matrix (CPM) or the zero matrix. Usually a quasi-cyclic parity-check matrix (PCM) with circulant row blocks, circulant column blocks, and the circulant size is represented in the following form:
,
where the integers are in the range . Here we denote by the CPM corresponding to the right cyclic shift by positions if and the zero matrix if . The integers are the exponents and the corresponding integer matrix is the exponent matrix of . In what follows the QC LDPC codes and their PCMs are defined by the corresponding exponent matrices.
0. Nested QC LDPC Codes
We describe a nested family of irregular QC LDPC codes obtained from a high-rate core graph using an extension by several single parity-check codes (SPCs).
The general structure of the corresponding exponent matrices is shown in Figure 1, where the green part corresponds to the highest rate core code and is called the core matrix and the lower white part is called the extension part. The core matrices have a dual-diagonal structure in their parity part. The full matrix with the extension part supports a low-complexity encoding.
[image:]
Figure 1. Nested QC-LDPC code.
The number of information nodes for the base graph #1 (hereinafter BG#1) is set to =22 with maximal lift size supported Zmax=384. BG#1 covers info block sizes K: 512<=K<=8448 and code rates R: 1/3 <= R <= 8/9.
In order to obtain codes with different number of information bits and parity bits we use the length and rate adaption scheme described in the next sections. This is achieved by using puncturing both information and parity bits, and also shortening by zero padding in the information parts of the codeword. For both base graphs for all rates we puncture symbols that correspond to the first two circulant column blocks of the PCMs as it is shown in Figure 1. These two punctured circulant columns have relatively high column weight among all the circulant columns and are called High-Weight (HW) columns. The structure of the core matrix is similar to the structure utilized in the PCMs for QC LDPC codes described in the IEEE 802.11ad™-2012 standard.
The BG1 agreed by email discussion [89-24](see Fig. 2) has the following structure:
[image:]
Figure 2. Agreed BG1 by email discussion [89-24]
0. Lifting method, length and rate adaptation
Shortening, puncturing and lifting method are used for QC LDPC code to implement length and rate adaptation. Suppose we have an exponent matrix with the circulant size . Below we describe how we obtain the -code with codeword size and information block size , where .
For base graph BG#1 we use the offset lifting method described below to obtain several lifted versions of the exponent matrix with the circulant size , . Such method can improve the performance with fine granularity. The lifting method consists of 4 steps:
1) For the given, select lift size as the minimal , where is selected from a set Zallowed. One should note that all such values have the following form: .
2) For the given K<512, we consider two alternatives: fixed Kb=22 (Alt1) or variable Kb/Z (Alt2),. Details are given below.
a. Alt1: to strictly follow the way forward in email discussion, we set Kb fixed to 22, the minimal Z principle as used for K>=512 is also applied for K<512.
b. Alt2: Kb is allowed to be smaller than 22, and Z is selected based on an optimized table. Performance is proved to be better respect to the case of Kb fixed to 22. In alt2, we change some of the PCMs (the ones for K<512) and use the recommended Z listed in Table 1 for each K range with K<=512. Note, variable Kb/Z selection is only applicable for PCM set=[4,5,7,8] of PCM_alt2. Other PCMs of PCM_alt2 are still using the minimal Z principle.
3) 8 labeled PCMs are used, and Zallowed is shown in Table 2.
4) After lift size is defined, a parity check matrix is assigned to the given information size . Here are 8 different labelled versions of BG#1 corresponding to different values of the parameter .
5) Shift values of the PCM for the given K are defined from the base PCM using modular lifting function: if , and otherwice.
Table 1 Recommended Z for alt2 PCMs (variable Kb/Z)
	K range
	Recommended Z

	104-110
	7

	111-132
	8

	133-154
	9

	155-176
	8

	177-198
	10

	199-242
	11

	243-286
	13

	287-308
	16

	309-330
	18

	331-352
	16

	353-396
	18

	397-440
	20

	441-484
	24

	485-506
	26

	507-511
	24

Table 2 Allowed lifting values for BG1
	Z
	a

	j
	　
	2
	3
	5
	7
	9
	11
	13
	15

	
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

Puncturing and shortening
Once we obtain the lifted exponent matrix and the circulant size by the method described above, we define the code with codeword size and information block size obtained by puncturing the bits corresponding to the first two circulant columns (see Figure 1). Let us define parameters and .
If , we further puncture redundant bits starting from the end of the codeword. After applying the puncturing described above, the punctured codeword is obtained. If we use further shortening by zero padding for the last bits in the punctured codeword.
Proposal 1: The set of 8 PCMs for BG1 designed assuming Kb is fixed to 22 (or the set of 8 PCMs for BG1 designed assuming variable Kb/Z) and corresponding lifting method should be adopted in case it is agreed that Kb is fixed to 22 also for K<512 (or in case it is agreed that Kb and Z can vary if K<512).
Conclusions
This contribution describes a design of QC LDPC code for eMBB. It is shown that this design of LDPC code has good performance and supports the fine-granularity rate-matching scheme for all scenarios of eMBB channel.
Proposal 1: The set of 8 PCMs for BG1 designed assuming Kb is fixed to 22 (or the set of 8 PCMs for BG1 designed assuming variable Kb/Z) and corresponding lifting method should be adopted in case it is agreed that Kb is fixed to 22 also for K<512 (or in case it is agreed that Kb and Z can vary if K<512). .
References
[bookmark: _Ref477949786]Chairman’s Notes, RAN1#89 meeting, China, May 15 – 19, 2017.
Email discussion: [89-24] LDPC code base graph #1 for NR.

image1.png
dual-diagonal

core matrix

structure

identity matrix

I<— layer 1

I<— layer 2

I<— layerp

two punctured information bits

circulant blocks

T

parity bits

A

image2.png

