
Page 1

3GPP TSG RAN WG1 Meeting NR-Adhoc#2		R1- 1711347
Qingdao, P. R. China, 27-30 June 2017

Agenda item:	5.1.4.2.1
Source: 	Intel Corporation
Title: 	Simple distributed CRC design for Polar codes
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
In this document, we present simple distributed (or cropped) CRC scheme for early termination (ET) of Polar decoding and provide details of this construction scheme for evaluation. In our view, it is necessary any code construction for Polar code be compared against the conventional CA-Polar construction as the benchmark, while considering the complexity benefit tradeoffs.
Overview
Simple distributed CRC scheme provides the ability to distribute all J + J’ CRC bits among info bits in the simplest possible way – e.g. evenly, one CRC bit after each block of K/(J + J’) information bits. Though the framework allows arbitrary CRC bits distribution, we focus on evenly distributed CRC as it can provide controllable benefit in terms of early termination. Note that a major disadvantage of the distributed CRC proposal in [1] is that the distribution is an artifact of the CRC polynomial and it does not provide any control (from code design perspective) in distributing the CRC bits evenly to gain more ET.
Advantages of Simple distributed CRC scheme:
· Very simple, controlled distribution of assistance bits
· High probability of ET on earlier stages of decoding, hence bigger latency gain
· No loss in neither BLER nor FAR performance comparing to CA-Polar
· No additional interleaving step is required (unlike other distributed CRC proposals [1] that require interleaving)
· No special treatment of PC-frozen bits is required (unlike the PC-CA proposal)
· No changes in the frozen / non-frozen pattern
· Worst-case decoding latency is identical to that of reference CA-Polar (including no interleaving due to very simple CRC distribution)
· Implementation flexibility – memory / latency tradeoff
· Decoding modifications that improve BLER performance are possible, if FAR requirement is relaxed
The benefits described above are possible because of distributed bits computation, strictly speaking it is not equivalent to an ordinary CRC. In the following sections we describe simple distributed CRC framework, generation and checking algorithms for such type of CRC.
Note that the motivation for code constructions differing from CA-Polar with all J+J’ bits of CRC appended to the information block should be considered based on the complexity/benefit trade-offs i.e. CA-Polar proposal should be considered as baseline unless other code constructions are shown to have clear and significant benefits.
Simple distributed CRC framework
To make early termination possible, CRC generator matrix should have column echelon form. One technique for achieving that has been proposed in [1]. However, it restricts number of distributed bits and their possible positions due to its reliance on an interleaver that is closely tied to the CRC polynomial. Here we propose another method which leads to simple nullification of lower-triangular part of CRC generator matrix (Fig. 1).
[image:]
Fig.1 Simple distributed CRC generator matrix.
Although we “crop” CRC generator matrix and move some info bits out of CRC parity-checks, it does not increased false alarm (FAR). As can be seen (e.g. fig 3), the information bits which are decoded last (in Polar decoder) participate in less number of parity-checks than the ones which are decoded first (in Polar decoder). For coding schemes such as Polar with sequential decoding capability it does not lead to increase of FAR. Since the last info bits have higher reliability due to Polar code structure (and due to sequential nature of Polar decoding, any errors in the initial bits on a decoding path can lead to more errors on that path), it is sufficient to check them less times without significant loss in error detection capability.
[image:][image:][image:]
Fig. 2 Examples of simple distributed CRC generator matrices. Red marks show that the corresponding information bits are “nulled” out of the CRC generation for that CRC parity bit.
Therefore, it is possible to “crop” lower part of CRC generator matrix in any desirable fashion (Fig. 2). It allows one to choose CRC bits distribution in the way that fits the desired goals better. For the purposes of higher early termination (ET) gain and simplicity we choose evenly distributed bits (see Fig. 3). The figure shows the each CRC bit appears after every K /(J+J’) information bits (note that the actual location will require adjustments such as ceiling and/or flooring operations when K/(J+J’) is not an integer, but those do not significantly affect the ET gains). It is also possible to have block of CRC bits (instead of 1 CRC bit) at end of each segment. For the purpose of ET gains evaluations, we can consider J+J’ = 19 or 22, and evenly distributed CRC as shown in Figure 3.
[image:]
Fig. 3 Simple distributed CRC bits.
We further note that while the above looks at the extent of possible ET gains, it is also necessary to ensure the CRC still serves its purpose of error detection in both transmitted and untransmitted codeword scenario case. With regards to that, we find that the amount of CRC bits that are distributed has to be controlled rather than fully distributing as in Figure 3. In particular, the CRC attachment at the end of information block has to be substantially larger so that the false alarm rate is reasonable, though it will lead to much smaller ET gains:
[image:]
Simple distributed CRC generation
Simple distributed CRC with a CRC generator matrix can be implemented using ordinary CRC shift registers (Fig. 4). For generation of a CRC bit at the end of a particular block of information bits(e.g.b0), the CRC computation can be performed by feeding the block of information bits at the input of CRC shift register, followed by nulled information bits (i.e. set to 0) for all bits after that information block. Thus, to get the first CRC bit C0 that follows info block b0, |b0| info bits should be fed to the CRC shift register and then K-|b0| zeros instead of remaining bits. In this case C0 will depend only on b0 info block, therefore parity-check can be performed right after decoding of b0 and C0. For calculation of C1 bit b0 and b1 info blocks and K-|b0|-|b1| zeros are fed to CRC shift register subsequently and so on.
In terms of generator matrix the above is equivalent to nullification of all the rows correspond to info bits decoded after particular CRC bit and then constructing of the desired matrix from shortened columns (Fig. 5). The bits to select out of the CRC shift register can be starting from the MSB for the first CRC bit, and the next MSB for the next CRC bit and so on.

[image:]
Fig. 4 Simple distributed CRC generator diagram for length-(n+1) CRC generation. Number of shifts (e.g. (K-|b0|) shifts) indicates the number of 0’s that are fed in after block b0 before taking the result as CRC bit).
Thus, each cropped CRC bit Ci is computed as follows (also shown in the figure 4):
1. [b0 b1 … bi] info blocks are fed to CRC shift register.
2.
 shifts are performed without feeding any bits (or setting the corresponding inputs to 0).
3. ith bit of result (i.e. from the CRC shift register) is taken.
Number of CRC registers can be n ≤ J+J’. In case of n = J+J’ distributed CRC preprocessing latency is the same as of conventional CA-Polar, since all J+J’ cropped CRC bits are computed in parallel.
[image:]
Fig. 5 Generator matrix background of simple distributed CRC.
Simple distributed CRC check
Process of CRC check is somewhat similar to the encoder. It has the advantage that it can be done right after decoding of CRC bit Ci and previous info blocks [b0 b1 … bi]. Each checksum bit Si is computed like this:
1. [b0 b1 … bi] info blocks are fed to CRC shift register.
2.
 shifts are performed without feeding any bits.
3. J+J’ cropped CRC bits are fed to CRC shift register.
4. ith bit of result is taken.
Single-bit and multi-bit ET mode are also possible. In case of single-bit ET verification is passed if Si passes CRC check. In case of multi‑bit ET all previous estimated CRC bits ([S0 S1 … Si]) should pass cropped CRC check.
[image:]
Fig. 6 Cropped CRC check diagram.
Update for simple distributed CRC check
Full distribution of CRC bits can provide the best ET gains, however it will affect the false alarm in either the intended codeword scenario or in the unintended codeword scenario. From our perspective, the ET gains have to be evaluated using the unintended transmission scenario as this is the scenario for which UE will be performing most of the PDCCH blind decoding. On the other hand, the CRC still has to offer error detection capability as intended. To improve FAR, we can distribute bits evenly,
· 19 bit CRC, with <9 bits distributed, and 10+ bits at the end of the info block
· Maximum of 9 bits distributed can be uniformly distributed or placed in groups of 3,3,3 in the end of three different info blocks.
· 9 bits distributed but placement is uneven.

Conclusion
In this document, we present a simple distributed CRC scheme. While our first preference is CA-Polar, we propose that any assistance bits (if distributed) are based on CRC and are distributed in a controlled and simple way as proposed in the companion document [2].
References
[1] R1-1708833 Design details of distributed CRC Nokia, Alcatel-Lucent Shanghai Bell, RAN1#89
[2] R1-1711348 Evaluations of Polar code designs, RAN1#Adhoc#2, June 2017

[bookmark: _GoBack]

1/5
image6.png
Lo Joocll T T 1 1 HI0H

crel cre2 order of decoding creJ+J'
>

image7.png
Information block, K bit

+(K-|b0|) shifts

*I'.)RC shift reg 0

+(K-|bO|-|b1]) shifts ’}C shift reg 1

\i

+(K-|b0J-...-|b2]) shifts

CO

+(K-3,_, Ibk]) shifts |

+ 0 shifts [

C1
CIC shift reg 2 c2
CRC sll‘t reg i ci
CRC shift reg

image8.wmf
å

=

-

n

i

k

k

b

K

oleObject1.bin

image9.png
Ocoocoo0oo0o000O
OcooooO00O0O0O
cocoooocococoo
Ocoooo0oo0oo0o00Oo
cooooocoocoo
...0000000000
Ocooocoo0o0O00O
ocoocoocooooo

coocooocooocooo
Oo0o0co0oO0OO0OO0O0OOOO0OO
[s¥-R-N-N-N-N-N-N-N-N-N-
cococoocooocococoocooco
O0oo0o0O0O0OO0OOOOO
c T oo0ooo0oo0o0o0o0o00O0O0
O~~~ 000000000000

[=¥-NoN-NoNoNoNoNaloNoNa]

cropped CRC

shiftreg n

shift reg 2

shift reg 1

shiftreg 0

oleObject2.bin

image10.png
Received info bits

+(K-|bO]) shifts

+(K-|bOJ-|b1]) shifts

+(K-|bOJ-....-|b2]) shifts

+(K-,_, [bk]) shifts

image1.jpeg
—OT-T000O0OT 00O« v v+

- Ov-O0OO0OO~+v0O«« o OB
-o - - - o
o-ooo oo M\\\Q\\.
7

image2.jpeg
~or-v-oo
~+~-ov-oo
~ov-ooo
~-+-v-oOo«
[SRaE-R
~o-+-vo
or+~vo~

or-o+~v+vo

image3.jpeg
STITIIIE S
coro e Ao
e & &

oo~ s>

image4.jpeg

image5.jpeg
K/(J+J)

crel cre2 order of decoding

