Page 1
3GPP TSG RAN WG1 Meeting NR-Adhoc#2		R1- 1711344
Qingdao, P.R. China 27-30 June 2017
Agenda Item:	5.1.4.1
Source: 	Intel Corporation
[bookmark: Title]Title:	LDPC Coding chain
Document for:	Discussion/Decision
1. Introduction
In this contribution, we discuss aspects related to LDPC coding chain, including CRC attachment, code block segmentation, HARQ-redundancy version, etc.
2. CRC attachment
In RAN1#88bis, the following agreement was made with respect to CRC attachment.
Agreement:
· Number of bits for TB-level CRC is: LTB,CRC =24 bits, at least for TBs larger than a threshold (e.g. around 512 bits)
· FFS the value of LTB,CRC for TBs smaller than the threshold, and the value of the threshold (0 is not precluded)
· If a TB is segmented into 2 or more CBs after code block (CB) segmentation,
· CB-level CRC is applied, i.e., CRC bits are attached to each code block individually (as in LTE)
· Number bits for CB-level CRC is: 0 < LCB,CRC <= 24 bits
· Exact value(s) LCB,CRC are to be agreed after base graph(s) are agreed, taking into account inherent LDPC PC capability
· FFS whether for a code block group (CBG) containing 2 or more CBs but not all CBs of the TB, any additional CRC bits are attached to the CBG
· To be decide after decision on the value(s) of LCB,CRC

For transport block level CRC, it was agreed that the CRC length would be 24 bits for at least block sizes larger than a threshold (e.g. 512 bits). In our view, there are two reasons to consider smaller CRC attachment to an LDPC coded block – 1) inherent parity-check criterion for LDPC provides error detection capability, and 2) smaller CRC can improve performance due to overhead reduction, especially at smaller block lengths. In our view, the threshold of block size itself should be determined based on overhead considerations, while the actual CRC length reduction itself depends on the base graph design. We think a threshold between 256 and 512, with a CRC reduction of ~8 bits, will provide overhead reductions of 2% to 16% depending the block size. Therefore, we propose the value of threshold is 512 bits.
Proposal 1: Number of bits for TB-level CRC is: LTB,CRC =24 bits, at least for TBs larger than 512 bits.
Then, the next question is the CRC length for transport blocks below the threshold of 512 bits. To address this question, we would need to look further into the evaluation of inherent parity-check properties of LDPC Base graphs adopted for NR. Multiple contributions [1][2][3]have shown that for smaller block sizes (< 512), the transport block false alarm target of 1e-6 can be achieved using smaller number of CRC bits, using 12-18 bits of TB CRC. As can be seen from our results for K=40, R=2/3 on Fig.1, LTB,CRC = 16 CRC is pretty enough to meet such requirement. Our preference is to adopt 16 bits of TB-level CRC as working assumption (to be confirmed at August RAN1 meeting based on the agreed BG1 and BG2 lifting).
[image:]
Figure 1. False alarm rate for K=40, R=2/3 with LTB,CRC =6,8,12,16
Proposal 2: Adopt as working assumption: Number of bits for TB-level CRC is: LTB,CRC =16 bits, for TBs less than 512 bits.
Then, a further question for consideration is the CRC length for code block and whether code block group level CRC attachment is necessary. In our view, the function of a code block group level CRC is to generate feedback for the code block group based transmissions – this purpose can be served by the code block CRC itself. Perhaps the code block CRC can serve the dual purpose of enabling early decoding termination as well as providing a reliable A/N generation for CBG-level feedback. Therefore, our proposal is not to adopt CBG-level CRC, but incorporate the desired functionality into the CB-CRC itself. Given the code block CRC gets attached to TBs of lengths >8448, from an overhead perspective, the code block CRC length itself may be immaterial, and hence we are fine with same length as TB-CRC or a smaller length CRC for CB.
Proposal 3: CBG-level CRC is not supported since the same functionality can be achieved via CB-level CRC.
3. Code block segmentation and sizes supported for NR
The flexible LDPC design can support any block size using a combination of zero-padding and coarse shift granularity that were already agreed in previous meetings. However, it is also important to identify the set of block sizes that are to be used for encoding and transmitting code blocks derived from the LDPC code design envisioned for NR. In particular, it is desirable to perform rigorous performance evaluations to ensure good performance of the supported code block sizes. Fortunately, the minimum set of information block granularity for evaluation (that was agreed in previous RAN1 meeting#88) could be used as a starting point for the supported code block sizes.
	Kmin<=K<=512
	528<=K<=1024
	1056<=K<=2048
	2048<=K<=6144
	6144<=K<=8192

	8
	16
	32
	64
	128

Note since the largest information block length is 8448 per the Working assumption (in last RAN1), some additional code block sizes need to be added at the upper range between 8192 and 8448 (e.g. in granularity of 128). Such evaluations can be undertaken after Base graph and lifting are finalized at the end of June Adhoc meeting.
An alternative is to allow the set of code block sizes to comprise either a subset (e.g. only allow native LDPC information block lengths (ka …..kb) x Z) or a super-set (e.g. allow all block lengths that are multiples of 8 between Kmin and 8448), but then the parity-check matrix proposals may need to be evaluated at such code block sizes to ensure performance is maintained.
Code block segmentation and base graphs
Code block segmentation is typically used for the case where the transport block is larger than the maximum code block size. However, for EMBB LDPC, there are two base graphs, each offering a different maximum CB size – 8448 for BG1, and 2560 for BG2 (WA), and different code rates of optimization (8/9~1/3 for BG1, and 2/3 to 1/6 for BG2). Then whether segmentation is applied for a particular transport block also depends on the BG used for encoding that transport block, which in turn would depend on the expected modulation and coding scheme (MCS).
We propose that code block segmentation is primarily used for BG1. For BG2, code block segmentation can be applied in certain cases, for certain low MCS levels, and when the number of code blocks (due to use of BG2) does not excessively increase number of code blocks and impact the performance. For example, there may be a limitation on the combination of TB size, MCS level and resource allocation, below which BG2 is used, and for all other cases, BG1 is applied. For example, BG2 is used for cases where TB size is less than 5120 (2x2560), and MCS lower than a particular spectral efficiency or corresponding to a modulation order (e.g. QPSK). Such a functionality may also be configured via higher layer signaling. Moreover, retransmissions of a transport block should not require a UE to soft combine transmissions across two base graphs, i.e. UE could be indicated to use the same base graph for a retransmission as was used in the first transmissions.
Proposal 4: Code Block segmentation is support for BG1 and also for BG2.
· Conditions for which BG2 is used with code block segmentation is FFS.

Per-code block functions:
Following the code block segmentation (and any possible group CRC attachment), the remaining operations such as zero-padding, LDPC encoding, rate-matching (including a circular buffer operation with redundancy version) and modulation symbol mapping should all be performed at code block level. This is very helpful for a pipelined decoding architecture, and also supports flexible implementations (e.g. one or more parallel decoders can be used).
Z value for code block segmentation:
For code block segmentation, two options were identified in last meeting for determining the code block size.
Agreement:
· FFS: how CB sizes are determined within a TB
· One of the following approaches will be selected at June Adhoc for determining the Z values of code blocks within a TB:
· Alt 1. Same value of Z
· Alt 2. At most two different values of Z for a given TB

Typically, in code block segmentation, the goal is to find a suitable code block size (or sizes) that minimize the number of code blocks for a TB, and potentially minimize zero-padding and still achieve good performance. In between Alt 1 and Alt 2, the main difference is Alt 2 can further reduce the zero-padding and improve performance. On the other hand, Alt 1 is simple as it can lead to simpler implementation as all code blocks can be treated similar in encoding/decoding operations (e.g. single LDPC decoding schedule for all code blocks, etc). Our preference is to use Alt 1 as it is simple, unless significant issues are identified with it with respect to performance. Note performance related issues could be addressed via suitable code block size and/or transport block size selection. Once the base graphs are finalized, detailed evaluations can be performed to identify any problematic scenarios for Alt 1.
Proposal 5: Adopt as working assumption: Same value of Z is used for code blocks within a TB.
4. Zero-padding
In the Adhoc meeting in Jan 2017, the following was agreed with regards to shortening. However, there was a working assumption on the location of the filler bits (or zero-padding). We propose to confirm the working assumption. Furthermore, we also propose to set the value of the filler bits F to 0, in line with the conventional shortening/zero-padding procedure (e.g. also used in LTE turbo code). Setting the filler bit value to 0 can also benefit in LDPC implementations (encoding/decoding) as the edges correspond to such filler bits could be removed from the Tanner graph without any impact on performance.
Agreement:
· Shortening is applied before LDPC encoding when necessary
· Working assumption: Filler bits F are attached at the end of info block B to form vector U = [B F]
· Can be verified at RAN1#88
· Vector U is the input to LDPC encoding
· The filler bits F are not transmitted

Proposal 6: Confirm the working assumption from RAN1#Adhoc i.e. filler bits F are attached at the end of info block B to form vector U = [B F]
Proposal 7: Filler bits F are set to 0.
5. IR-HARQ redundancy versions and LBRM
In the last meeting, it was agreed that at least four redundancy versions will be supported for NR. Since adaptive HARQ is supported for NR, the redundancy version information may be transmitted along with the resource allocation information within the DCI, and hence increasing the number of redundancy versions can increase the control channel overhead. Therefore, it is necessary to balance the performance optimization for retransmissions vis-à-vis the incurred overhead. If indeed there is a need to optimize for such scenarios, our preference is to simply double the number of redundancy versions to 8.
We propose to support a maximum of four redundancy versions for NR. There are many ways to determine the starting point for the redundancy versions (e.g. see [13]). We think the LTE-like redundancy version definition could be suitable for NR also. Since LDPC code design is aligned closely with the shift size, for simplicity, it is further proposed that the starting point in the circular buffer can be determined based on the base matrix (or shift size) associated with the parity-check matrix used with the circular buffer.
Proposal 8: Maximum number of redundancy versions supported for LDPC HARQ is four. The redundancy versions are equally spaced within the circular buffer and aligned with the shift size.
In the last Adhoc meeting, it was agreed that LBRM is supported and in last RAN1#89 (Hangzhou), it was agreed in the HARQ and scheduling session that LBRM is taken into account in soft buffer computation. LBRM can be handled by limiting the circular buffer size corresponding to code blocks that belong a large transport block. Given the details of the UE soft buffer dimensioning are still under discussion in the HARQ/scheudling, we think that the LBRM and its association with UE category and soft buffer should considered together until the next RAN1 meeting in August.
6. Summary
This document presented our views on LDPC coding chain, and we propose the following.
Proposal 1: Number of bits for TB-level CRC is: LTB,CRC =24 bits, at least for TBs larger than 512 bits.
Proposal 2: Adopt as working assumption: Number of bits for TB-level CRC is: LTB,CRC =16 bits, for TBs less than 512 bits.
Proposal 3: CBG-level CRC is not supported since the same functionality can be achieved via CB-level CRC.
Proposal 4: Code Block segmentation is support for BG1 and also for BG2
· Conditions for which BG2 is used with code block segmentation is FFS.
Proposal 5: Adopt as working assumption: Same value of Z is used for code blocks within a TB.
Proposal 6: Confirm the working assumption from RAN1#Adhoc i.e. filler bits F are attached at the end of info block B to form vector U = [B F]
Proposal 7: Filler bits F are set to 0.
Proposal 8: Maximum number of redundancy versions supported for LDPC HARQ is four. The redundancy versions are equally spaced within the circular buffer and aligned with the shift size.
7. References
[1] R1-1707848	On CRC attachment for LDPC	MediaTek Inc, RAN1#89, May 2017.
[2] R1-1707201	Study of Number of CRC Bits for Small Transport Blocks	Ericsson Inc RAN1#89, May 2017.
[3] R1-1708825	CRC attachment for Smaller TBs	Nokia, Alcatel-Lucent Shanghai Bell RAN1#89, May 2017.

[bookmark: _GoBack]

5/5
image1.png

