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Introduction
In RAN1 #89, it was agreed [1]:
Agreement: 
· For DL: 
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained 
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination

In this contribution, we compare CRC-assisted polar codes (CA-polar) with parity-check polar codes (PC-polar) and show that latter have the potential of increasing decoding latency and implementation complexity while not offering any performance benefits.
We also investigate the effects of low-latency, parallel decoding on de-interleaver implementation for the distributed CRC scheme. As well as the relation between decoder pipelining and early termination gains.
[bookmark: _Ref471757252]Complexity and latency comparison between CA-SCL and PC-SCL
One of the most efficient methods to reduce decoding latency of polar codes is the simplified successive cancellation list (SSC-list) decoding algorithm [3][4][5][6]. This algorithm increases parallelism and reduces the number of operations performed by applying low complexity decoding algorithms to certain constituent code structures that appear in the recursively constructed polar code. When constituent codes of rate 0 (all frozen), codes of rate 1 (all information), or repetition codes are encountered during the decoding process, the path metrics and the path list are updated directly based on the available decoder messages without the need for further recursion. By avoiding unnecessary recursion, many calculations are avoided and the latency is significantly reduced.
The speed gains of SSC-list decoding increase when the number of constituent codes decreases and the size of the constituent codes with efficient decoding methods increases. For example, decoding a rate-1 code of length 16 is faster than decoding two constituent rate-1 codes of length 8. 
Parity bits (dynamic frozen bits) in a PC-polar list decoder do not generate new paths and are used to update the path metrics, like frozen bits. They cannot be treated as information bits since they reduce the constituent code dimension when replacing an information bits. In fact, a constituent code whose first bit is a parity bit becomes a single parity check (SPC) code. It’s an even parity code if the value of the parity bit, determined online, is 0, or an odd parity code if the value of the parity bit is 1. It was shown in [4] and [6] that SPC constituent codes cannot be decoded as rate-1 constituent codes.
[bookmark: _GoBack]Therefore, when a parity bit replaces an information bit in a rate-1 constituent code, there is one or two options to decode it. The first option, applicable regardless of where the parity bit occurs within the constituent code, is to replace the constituent code with two or more smaller constituent codes. If the parity bit is located such that the constituent code is an SPC code, then the SPC decoding rules can be used as a second option. As discussed in [6], the first option incurs a latency penalty compared to the second: the latency of decoding an SPC code of length 64 with list size = 4 increases from 5 to 26 cycles for example.  Adding the hardware to support SPC constituent codes, the second option, noticeably increases the decoder area. For example, area increases by ~10% for the N = 1024, K = 512 decoder used in [6]. This trade-off exists even if only one parity bit is used as in the latest PC-polar proposal [2].
In a CRC-assisted polar list decoder on the other hand, the CRC bits are only used to select the final candidate from the list after the decoder is finished performing all calculations. Therefore, they are treated as information bits and do not interfere with the constituent-code structure utilized by the SSC-list decoding algorithm.
Observation 1: CA-SCL has lower decoding latency at the same implementation complexity compared to PC-SCL even when a small number of parity bits is used in PC-SCL.
Given the lack of performance benefits of the PC-polar scheme and potential for increased latency and implementation complexity compared to CA-polar, we propose the following:
Proposal 1: J + J’ should be limited to nFAR + 3.
[bookmark: _Ref471757255]Distributed CRC
Reduced-latency polar decoders estimate multiple bits simultaneously, either using SSCL-based algorithms as described earlier or by decoding groups of bits as in [8]. The information-bit de-interleaver required by the distributed CRC scheme [9] must be able to match the decoder bit-estimation speed. Otherwise, it becomes the bottleneck limiting decoding speed and negating the early termination benefits of the distributed CRC scheme. Therefore, the de-interleaver needs to have a more parallelized architecture, resulting in larger chip area.    
[image: ]
[bookmark: _Ref485509447]Figure 1 - Distributed CRC’s mother interleave pattern for toy example with Kmax=6
Consider an example with Kmax=6 having a mother interleave pattern shown in Figure 1.  For K less than Kmax, on the receiver side, the decision bit vector needs to have nulls (“blanking”) inserted before being mapped through the mother de-interleave pattern as shown in Figure 2 for an example with just 4 different K values.
[bookmark: _Ref485510306] [image: ]Figure 2 - De-interleaver operation involving insertion of nulls
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[bookmark: _Ref485511409]Figure 3 - Multiplexer-based de-interleaver design
A multiplexer-based design, shown in Figure 3, can be used for null insertion and the multiplexer select signals are determined by which K value is being used. Therefore, even though the blanking scheme contains a static mother de-interleaver, it still requires a multiplexer network for null insertion. The complexity of this multiplexer network grows with the number and range of supported K values. If the range become sufficiently large, pipelining will be required to maintain decoder clock frequency, increasing latency.
Observation 2: A parallel, low-latency blanking scheme of distributed CRC de-interleaving requires a multiplexer network whose complexity grows with the number and range of supported K values.
Pipelined Decoders and Early Termination
Pipelined decoders, that operate on multiple codeblocks simultaneously, are an effective method to limit blind-decoding latency while improving hardware utilization. An example of such a pipelined decoder, with 4 parallel codeblocks, was proposed in [8].
The goal of early termination in PDCCH decoding is to save power when the decoding of a codeblock can be completed early so that the decoder can spend more time in its idle state.  However, this intended benefit cannot be realized with pipelined, multiple codeblock processing that maximizes the efficiency of a SCL Polar decoder.  Even if a particular codeblock is terminated early, the decoder is still actively processing the rest of the code blocks and cannot start processing new code blocks yet.
Observation 3: Efficiently using decoder hardware by means of pipelining codeblocks limits the gains of early termination.
Conclusions
Observation 1: CA-SCL has lower decoding latency at the same implementation complexity compared to PC-SCL even when a small number of parity bits is used in PC-SCL.
Given the lack of performance benefits of the PC-polar scheme and potential for increased latency and implementation complexity compared to CA-polar, we propose the following:
Proposal 1: J + J’ should be limited to nFAR + 3.
Observation 2: A parallel, low-latency blanking scheme of distributed CRC de-interleaving requires a multiplexer network whose complexity grows with the number and range of supported K values.
Observation 3: Efficiently using decoder hardware by means of pipelining codeblocks limits the gains of early termination.
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(a) Kmax=6, K=2:
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(b) Kmax=6, K=3:
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(c) Kmax=6, K=4:
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(d) Kmax=6, K=5:
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