Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk484735152]3GPP TSG RAN WG1 NR Ad-Hoc#2	R1-1710490
Qingdao, P.R. China 27th – 30th June 2017

Source:	Ericsson
Title:	CRC-based Polar Code Construction
Agenda Item:	5.1.4.2.1
Document for:	Discussion and Decision
Introduction
In RAN1#89, the following agreement was reached on Polar code construction.
	Agreement:
· For DL:
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination

In this contribution, we present several CRC-based Polar code construction schemes for NR.

Non-distributed CRC-assisted Polar Code
Non-distributed CRC-assisted Polar, aka, CA-Polar, is a well-known Polar code construction. (J+J’) CRC bits are generated using a length-(J+J’) CRC polynomial, and attached as a block behind the information bits before sending to the encoder.
CA-Polar has been demonstrated to provide excellent BLER performance. Since the (J+J’) CRC are treated the same as information bits in the encoder and decoder (except the last step of candidate selection in SCL), CA-Polar has the advantage of low encoding and decoding complexity. Hence CA-Polar is the most preferred candidate for NR.
Distributed CRC-assisted Polar Code
If early termination has to be explicitly supported by modifying the code construction, then distributed CRC (D-CRC) assisted Polar code can be considered.
We propose to generate the (J+J’) CRC bits based on the degree-J CRC polynomial. Among the (J+J’) CRC bits, a subset (for example, J’ bits) are distributed among the information bits, while the rest (for example, J bits) are attached as a block behind the information bits. The distributed CRC bits are generated by encoding subsets of information bits using the same CRC polynomial and extract some of the resulting CRC bits as those distributed CRC bits. The J’ CRC bits are generated from intermediate shift register values of the J-bit CRC polynomial. No interleaver is needed to generate the J’ distributed CRC bits. For implementation, generating the distributed CRC bits can simply be realized by extracting bits from the intermediate results during the CRC encoding process so that very little increase in complexity is incurred.
The extra J’ CRC bits maintains the error correcting capability of the extended CRC code in terms of false alarm rate (FAR) performance. They are also suitable to be placed closer to the beginning of the successive decoding process in order to achieve reduced latency through early termination. They can also be used as dynamic frozen bits to prune candidate paths during SCL polar decoding. The location to distribute the CRC bits is flexible and not limited by the CRC polynomial.
The design also has the benefit that a J-bit CRC polynomial can be used according to FAR target, and there is no need to search for degree-(J+J’) CRC polynomials. It decouples the selection of CRC polynomial from the list size of a SCL Polar decoder, i.e., the same degree-J polynomial can be used to generate J’=3 or J’=6 distributed bits. For selection of CRC polynomial, degree-16 CRC polynomial for LTE DL, and degree-8 CRC polynomial for LTE UL, can be reused as a starting point. Further optimization of CRC polynomial can be studied considering the specific needs of Polar decoder.

[bookmark: _Ref474186633]Table 1. CRC Polynomials
	# of CRC bits
	CRC Polynomials
	References

	
	Hexa-decimal
	Binary
	Polynomials
	

	8
	0x19b
	110011011
	
	LTE 36.212

	16
	0x11021
	10001000000100001
	
	LTE 36.212

Two variants of the distributed CRC scheme are:
1. Non-recursive D-CRC: each of the distributed CRC bits are generated by feeding the info bits before it to the CRC shift register. This variant is similar to that proposed in [3] except that a J-bit instead of a (J+J’)-bit CRC polynomial is used.
1. Recursive D-CRC: each of the distributed CRC bits are generated by feeding both (a) the info bits before it and (b) the distributed CRC bits before it, to the CRC shift register. Feeding the distributed CRC bits back to the shift register makes this a bit like a recursive scheme.
Non-recursive D-CRC
[bookmark: _Hlk484694698]In this variant, distributed CRC bits are generated non-recursively in the sense that CRC bits generated later are not computed using any values of the CRC bits generated earlier as input. As an example, the encoder structure of the overall proposed code is illustrated in Figure 1 for a case with extra CRC bits in addition to the CRC bits normally generated by a given CRC polynomial. All CRC encoders in this figure use the same CRC polynomial. The input of the -th CRC encoder is an ordered subset of the whole block of information bits for each , where denotes the size of the whole information block, and are the sizes of the subsets. Each subset is contained in the next subset (i.e.). Each constant may be pre-selected according to some predefined target ratio as that yields the desired effect in early termination and its associated reduction in average decoding latency.
Each distributed CRC bit, , is obtained by extracting one bit from the output of the associated CRC encoder, for . The final set of CRC bits are generated by taking all CRC bits generated by the CRC polynomial of degree , as illustrated in Figure 1. The final set of CRC bits always contains the complete set of the normal CRC bits generated by the given CRC polynomial per conventional CRC computation based on the whole block of information bits.
[image:]
[bookmark: _Ref484390578]Figure 1. Non-recursive D-CRC Encoder Structure

While for clarity of description, 4 CRC encoders are shown in Figure 1, in reality only a single CRC encoder is implemented, where the information bits are fed into the shift register continuously. Different distributed CRC bits are simply intermediate values in the shift registers taken out at different stages of running the same CRC encoder. This is illustrated in Figure 2 for the 8-bit CRC polynomial of Table 1.
Each of the 3 extra CRC bits is taken from the intermediate values of the shift register at different stages of the encoding (or bit-shifting) process. The normal CRC bits are taken from the final values in the shift registers after all the information bits are fed into the encoder.

[image:]
[bookmark: _Ref484389479]Figure 2. Shift-register Implementation of Non-recursive D-CRC Encoder Structure

Recursive D-CRC
In the second variant, distributed CRC bits are generated recursively in the sense that CRC bits generated later are computed using the values of the CRC bits generated earlier as input along with the information bits. Figure 3 illustrates the overall encoder structure for a case with extra CRC bits in addition to the original CRC bits normally generated by a given CRC polynomial. Each distributed CRC bit is re-inserted into the block of information bits so that they are re-encoded during the generation of the next CRC bit. Again, all CRC encoders in this figure use the same CRC polynomial, and is realized by a single CRC shift register. This is illustrated in Figure 4 for the 8-bit CRC polynomial of Table 1.
As in the non-recursive variant, each extra CRC bit is obtained by extracting one bit from the output of the associated CRC encoder. The final set of CRC bits are generated by taking all CRC bits generated by the CRC polynomial of degree . The final set of CRC bits always contains the complete set of the normal CRC code bits based on both the information bits and all previously generated extra CRC bits.

[image:]
[bookmark: _Ref484697843]Figure 3. Recursive D-CRC Encoder Structure
As in the non-recursive variant, the encoder can be efficiently implemented using shift registers by taking intermediate values in the shift registers as extra CRC bits. As illustrated in Figure 4, the extra CRC bits are re-inserted into the stream of information bits as input to the shift registers, so that the subsequently generated CRC bits are computed based on the previously generated CRC bits as well as the information bits.
[image:]
[bookmark: _Ref484697585]Figure 4. Shift-register Implementation of Recursive D-CRC Encoder Structure

CRC bit extraction and placement
For both variants of the D-CRC scheme the extraction of distributed CRC bits from the intermediate CRC encoding remainder/result can be done in the same way. For example, starting from the first subset of info bits, the most significant bit of the CRC encoding result (i.e., shift register values) is extracted and used as the first inserted distributed CRC bit c0. The second subset of info bits uses the second most significant of the second CRC encoding result (i.e., shift register values). Repeat the same process for the remaining subsets of bits. To optimize performance, it can be studied further to identify the optimal set of intermediate results from which CRC bits should be extracted.
The selection of the subsets of information bits should consider the possible early termination gain, which is greatest when only few information bits need to be decoded. We therefore aim to make the subsets small to move the distributed CRC bits towards the front. We suggest to make the subset sizes relative to the total number of information bits. As an example one can insert distributed CRC bits after 10%, 20% and 40% of the information bits for the case with . Further studies can be conducted to find the best possible locations.
Complexity
As already mentioned no extra CRC generation logic is needed to support the D-CRC schemes since only a single polynomial is used. The only additional logic needed is for selection of the distributed CRC bit insertion points and for selecting which bit from the CRC encoding result that should be used for each distributed CRC bit. This extra complexity is judged to be negligible relative to other encoder and decoder complexity.
Note also that the construction of the code does not require a decoder to be aware of the distributed CRC bits, it can treat the CRC bits as normal information bits and it will provide the same link performance. The distributed CRC bits can be checked at the end of the decoding operation at the same time as the normal CRC bits, and both sets of CRC bits should be used for list selection in an SCL decoder.
For a SCL decoder to do early termination based on the distributed CRC bits, it will have to maintain a CRC remainder for each list. The decoded distributed CRC bits can then be directly compared to the content of the CRC remainder. Only a small amount of additional logic is needed to select the CRC remainder bit and the locations of the distributed CRC bits for an early termination decoder.

Simulation Results
The performance of the non-recursive and recursive D-CRC schemes are studied in this section. The early termination effectiveness of the proposed schemes is studied in the companion contribution [4].
Code Construction Evaluated
The recursive and non-recursive D-CRC Polar construction is tested with the specific selection of distributed CRC locations set to:
· For J’=3 the distributed CRC are inserted after 10%, 20% and 40% of the information bits
· For J’=6 the distributed CRC are inserted after 10%, 20%, 30%, 40%, 50% and 60% of the information bits
The CRC remainder bits used as source for insertion of the distributed CRC bits are taken from the intermediate values of the shift register. There are three different cases:
· For J’=3 non-recursive case the bits extracted are bit 5, 5 and 7. Bit 0 is the least significant bit of the register.
· For J’=3 recursive case the bits extracted are bit 5, 5 and 6.
For J’=6 both recursive and non-recursive cases the bits extracted are bit 5, 6, 7, 8, 9 and 10.
[bookmark: _Ref178064866]Simulation setup
Two different information block sizes have been tested using DCI simulation assumption:
· 20 bits + 16 bits CRC and
· 60 bits + 16 bits CRC.
The Polar construction schemes evaluated are:
a) Plain CA-Polar with (16+3) CRC bits attached behind the info bits;
b) Non-recursive and recursive D-CRC Polar:
1) With J’=3 distributed CRC bits, and 16 CRC bits attached behind the info bits; This is labeled “dist3 end16” in the plots.
2) With J’=6 distributed CRC bits, and 13 CRC bits attached behind the info bits; This is labeled “dist6 end13” in the plots.

Four different transmitted code sizes have been tested: 96, 192, 384 and 768 bits. These code sizes correspond to 1, 2, 4, 8 aggregation levels. As agreed for NR PDCCH, one CCE is composed of 6 REGs, and one REG is composed of 12 REs in an OFDM symbol. Further, although it is not decided yet, in this study it was assumed that DMRS poses 1/3 overhead (4 RE for one REG), leaving 8 REs available for carrying QPSK symbols of PDCCH in a REG.
For 768 transmitted bits simple repetition “Natural – Puncturing” with mother code block size of 512 bits has been used. For the other block sizes “Split-natural – Puncturing” have been simulated [4].
· “Natural – Puncturing”:
· Repeat code bits with indices , i.e. the first) bit positions.
· “Split-natural – Puncturing”:
· Puncture the first bits naturally from bit index 0, and additional bits if needed are punctured alternately from and , as described in [4].

The information bit ordering sequence (or equivalently, frozen bit sequence) is based on the design in [3].

BLER
The BLER performance for the distributed CRC schemes, non-recursive and recursive, are practically identical for all tested cases and matches the plain CA-Polar scheme. This is shown in Figure 5 and Figure 6.
[image:]Figure 5. BLER for K=20 information bits for CA-Polar and Distributed CRC.

[image:]Figure 6. BLER for K=60 information bits for CA-Polar and Distributed CRC.
False Alarm Rate
As agreed in RAN1, the False Alarm Rate (FAR) tests are performed with random QPSK symbols plus AWGN as input to the decoder. This is the vast majority of the case in DCI blind decoding, where either the eNodeB didn’t send any valid DCI in the search space, or the UE attempts decoding of the 43 out of 44 candidates that do not contain the intended codeword.
The FAR is calculated as:
FAR = number of undetected erroneous packet / total number of packets;
As expected all the schemes have similar FAR performance as the CA-Polar scheme with 16+3 bit CRC. This is shown in Figure 7 and Figure 8.

[image:]Figure 7. False alarm rate for K=20 information bits for CA-Polar and Distributed CRC.

[image:]
Figure 8. False alarm rate for K=60 information bits for CA-Polar and Distributed CRC.

0. Undetected Error Probability
The undetected error probability is evaluated with intended codeword plus AWGN as input to the decoder. This is the case when the UE is decoding a codeword intended for it. This is the rare case in UE blind decoding attempts of DCI. This happens only when the eNodeB has sent a valid codeword in the search space, and the UE attempts decoding of the 1 out of 44 candidates, where the 1 candidate contains the valid codeword.
The probability that the decoder does not detect that a decoded block is in error is “undetected error probability Pud”, when the UE attempts to decode an codeword intended for it.
Pud = number of undetected erroneous packet / total number of packets
As can be seen from the plots most of the variants have reasonable performance. The two cases which has elevated Pud are non-recursive “dist6 end13” cases. At the low SNR end, Pud of most D-CRC variants are between 2e-5 and 3e-5, which is quite comparable to the 16-CRC error detection capability of 2-16 = 1.5e-5. At high SNR end, Pud drops off sharply.

[image:]
Figure 9. Undetected error probability for K=20 information bits for CA-Polar and Distributed CRC.
[image:]
Figure 10. Undetected error probability for K=60 information bits for CA-Polar and Distributed CRC.
Conclusion
Based on the simulation results and analysis above, we have the following observations.
Observation 1 CA-Polar is a simple and effective Polar code construction.
Observation 2 Recursive and non-recursive distributed CRC Polar (D-CRC Polar) are both low complexity alternatives to non-distributed CA-Polar.
Observation 3 Recursive and non-recursive D-CRC Polar achieve the same BLER and FAR performance as CA-Polar.
Observation 4 Recursive and non-recursive D-CRC Polar achieve comparable undetected error probability when detecting an intended codeword.

Accordingly, we have the following proposals.
1. Adopt CA-Polar for both DL and UL of NR.
1. [bookmark: _GoBack]Recursive and non-recursive D-CRC can be considered as alternative choices, if early termination is required to be supported via modified code construction.

[bookmark: _In-sequence_SDU_delivery]References
[1] [bookmark: _Ref474159919][bookmark: _Ref480553453][bookmark: _Ref478138618]ETSI TS 136 212 v12.2.0 (2014-10) LTE Release 12, http://www.etsi.org/deliver/etsi_ts/136200_136299/136212/12.02.00_60/ts_136212v120200p.pdf
https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks.
[bookmark: _Ref484695139]R1-1706965, “Polar Code Design,”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #89, Hangzhou, China, 15th - 19th May 2017.
R1-1710491, “Study of Early Termination for DCI,” Ericsson.

	10/11	
image3.emf

CRC EncoderCRC EncoderCRC EncoderCRC EncoderSamplerSamplerSampler[b0,b1,…,bk0-1]1st Assistant bit c0ExtractExtractExtractInformation Bits[b0,b1,…,bK-1]Combiner2nd Assistant bit c13rd Assistant bit c2J-bit CRC[b0,b1,…,bk0-1,c0,bk0,…,bk1-1][b0,b1,…,bk0-1,c0,bk0,…,bk1-1,c1,…,bk2-1][b0,b1,…,bk0-1,c0,bk0,…,bk1-1,c1,…,bk2-1,c2,…,bK-1]

image4.emf
+++++Information bitsI(x)x7x4x3x1Assistant bitsSwitch

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.emf

CRC EncoderCRC EncoderCRC EncoderCRC EncoderSamplerSamplerSampler[b0,b1,…,bk0-1]1st Assistant bit c0ExtractExtractExtractInformation Bits[b0,b1,…,bK-1]2nd Assistant bit c13rd Assistant bit c2J-bit CRC[b0,b1,…,bk0-1,bk0,…,bk1-1][b0,b1,…,bk0-1,bk0,…,bk1-1,…,bk2-1][b0,b1,…,bk0-1,bk0,…,bk1-1,…,bk2-1,…,bK-1]

image2.emf
+++++Information bitsI(x)x7x4x3x1Assistant bits

