

3GPP TSG RAN WG1 AH_NR Meeting	R1-1700111
Spokane, USA, 16th - 20th January 2017

Source:	Ericsson
[bookmark: Title]Title:	Implementation and Performance of LDPC Decoder
[bookmark: Source]Agenda Item:	5.1.5.1
[bookmark: DocumentFor]Document for:	Discussion

Introduction
In RAN1#87, it was agreed that LDPC codes will be used for the eMBB data channel and a few agreements on LDPC code design were reached [1]:
Agreements:
· Code extension of a parity-check matrix is used for IR HARQ/rate-matching support
· Use lower-triangular extension, which includes diagonal-extension as a special case
· For the QC-LDPC design, the non-zero sub-blocks have circulant weight <=2
· Circulant weight is the number of superimposed circularly shifted ZZ identity matrices
· In parity check matrix design, the highest code rate (Rmax,j) to design j-th H matrix for is
· Rmax,j <=8/9
· Rmax,j is the code rate of the j-th H matrix before code extension is applied (0 j< J)
· Rmax,j is the code rate after accounting for the built-in puncturing, if this is applied in H matrix design
· Rate matching to support transmission code rate higher than Rmax,j is not precluded

However, there is still no agreement on the row orthogonality of the base matrix. In this contribution, we give an example of a decoding algorithm that may be used to increase the efficiency and reduce the latency of the layered decoder implementation for base matrices without pairwise row orthogonality. Taking the improvements with this algorithm into account, we see no need for row orthogonality in base matrices used for NR.

Quasi-cyclic LDPC codes
Low-density parity-check (LDPC) codes are easily described through a parity-check matrix (PCM), where the rows and columns correspond to check nodes and variable nodes, respectively.
An important class of LDPC codes are quasi-cyclic (QC) LDPC codes. The PCM H of a QC-LDPC code is of size MxN, and can be represented by a base matrix H_base of size mb=M/Z and nb=N/Z, and a lifting factor Z. Each entry of H_base contains either the number -1 or one or more numbers between 0 and Z – 1. Let i and j be integers between 0 and (m/Z-1), and 0 and (n/Z-1) respectively. Then the submatrix formed from the entries in rows Z*i to Z*(i + 1) - 1 and columns Z*j to Z*(j + 1) - 1, are determined by the entry in row i and column j of H_base in the following way:
· If H_base(i,j) = -1, then the submatrix in the expanded binary matrix H is equal to the ZxZ zero matrix.
· If H_base(i,j) contains one or more integers k1, k2, … kd between 0 and Z – 1, the submatrix in the expanded binary matrix H is equal to the sum of the shifted identity matrices P_k1 + P_k2 +…+ P_kd, where each ZxZ submatrix P_k is obtained from the Z by Z identity matrix by cyclically shifting the columns to the right k times.
The above structure makes the LDPC encoding and decoding implementations simpler by partitioning the PCM into different blocks, as Z rows can be processed in parallel which reduces encoding/decoding latency as well. We note that the processing of a layer comprised of Z rows is less complex since it can be implemented with shift registers. We also highlight that the number of rows in PCM should be a multiple of Z in order for all layers to be of the same size.

LDPC layered decoding
[bookmark: _Ref462125875]In this section, we introduce the layered-scheduled decoding algorithm, which converges faster than the flooding-scheduled decoding algorithm. This algorithm is used as baseline for the new algorithm we propose, which is described in Section 4.
In layered scheduling iterative decoding [2], VN and CN messages are updated layer by layer within the PCM. In general, layered scheduling provides the same performance as that of the flooding scheduling but within half as many iterations. Therefore, the layered decoding converges faster and its latency and decoding complexity becomes lower. Here, for the sake of comparison with our proposed method, we describe the layered decoding process. We first define the following notations.
Notation:
: check node (CN) index
: variable node (VN) index ()
: Set of VNs that are connected to CN m
: an index of a layer within the MxN PCM such that each column in the submatrix has at most a weight one ().
: message from VN j to CN m
: LLR value of VN j
: message from CN m to VN j
Max_iter: maximum number of decoding iterations

Following the notations above, the layered decoding algorithm from (Hocevar, 2004) is summarized as follows:
(1): for iteration i = 1: Max_iter
(2): for layer b = 1:M/Z
(3): for row r = 1:Z
(4)
(5): ,
(6):
(7):
(8): end for row
(9): end for layer
(10): end for iteration

The following remarks should be considered regarding the implementation of the layered decoding.
1. , for all VNs, can be initialized by channel LLRs, i.e., , where is the received codeword from the channel and is the channel noise variance.
2. can be initialized as zero.
3. In step (6) of the algorithm, the function can be chosen from any of the sum-product, normalized min-sum, average min-sum algorithms or any variants of these.
4. We also note that as the layers of Z rows are orthogonal, the steps (3)-(8) can be parallelized. Furthermore, if the LDPC code has quasi-cyclic structure, the implementation of these steps can utilize shift registers to achieve very efficient decoding.

The interworking between the memory access unit and the processing unit for layered decoding is described in Figure 1. Interworking between the memory access unit and the processing unit for the first two layers of the layered decoding algorithm.

[image: C:\Users\eshiami\Desktop\Picture2.emf]
[bookmark: _Ref471308370][bookmark: _Ref471203854]Figure 1 Interworking between the memory access unit and the processing unit for the first two layers of the layered decoding algorithm.

[bookmark: _Ref471733465]Fast layered decoding
In this section, we propose a method that enables us to carry out memory access and computation process simultaneously, without any effort to make the row layers mutually orthogonal to each other. In the layered decoding design, as obvious from steps (4)-(6) and Figure 3, memory access (in step 5) and processing (in step 6) are done in a sequential manner so that memory access becomes idle as the processing/computation unit is active, and vice versa. Thus, this effect increases decoding latency, as the latency due to memory access (read and write) is of the same order of processing delay. If the row layers are mutually orthogonal, memory access of one layer can be done in parallel with the processing of another orthogonal layer. However, enforcing a pairwise orthogonal structure on the row layers typically results in a PCM with worse performance in terms of block-error rate.
[bookmark: _GoBack]In particular, we provide a sub-optimal decoding algorithm, called fast layered decoding, which has lower decoding latency and utilizes the decoding hardware more efficiently than the layered decoding. This is done by keeping the memory access and processing hardware units active simultaneously to avoid excess decoding latency. The proposed decoding algorithm adjusts the LLRs to partially account for deviations from the layered decoding due to non-orthogonal rows. Since the fast layered decoding algorithm works with estimates of the LLRs calculated in layered decoding, the performance in terms of achieved block-error rate is slightly worse.

In order to describe the proposed fast layered decoding, we first make the following new notations along with notations made in Section 2.1.2.
Notation:
: new message from CN m in layer b to VN j
: old message from CN m in layer b to VN j
The proposed fast layered decoding algorithm is as follows:
1: for iteration i = 1: Max_iter
2: for layer b = 1:M/Z
3: for row r = 1:Z in layer b
4:
5: ,
6:
7: end for row
8: for row r’ = 1:Z in layer b-1
9: if b is equal to 1
10: ’
11: else
12:
13: end if
14: ,
15:
16: end for row
17: end for layer
18: end for iteration

The following remarks should be considered regarding the fast layered algorithm.
1. can be initialized by channel LLRs, i.e., , and can be initialized as zero.
2. In step (14), all LLR updates are related to m’ belonging to layer b-1.
3. In step (6) of the algorithm, like in layered decoding, the function can be chosen from sum-product, min-sum or any of their variants.
4. The compensation term in step (14) must be considered as we delayed the update of the LLR messages . The compensation term enables the fast layered decoding since data dependency between two rows is removed.
5. It should be noted that the fast layered algorithm only calculates an estimate of the LLRs of the standard layered algorithm. Therefore, the BLER performance is expected to be slightly reduced.

The interworking between the memory access unit and the processing unit is described in Figure 4.
[image: C:\Users\eshiami\Desktop\Picture1.png]
[bookmark: _Ref471308374]Figure 2 Interworking between the memory access unit and the processing unit for the fast layered decoding algorithm.

The fast-layered decoding gives the same latency as the layered decoding algorithm applied on a base matrix with pairwise orthogonal rows, however without the structural constraint on the code that pairwise orthogonal rows codes gives. Hence it can generally give a better code design from a latency and hardware implementation perspective.

In terms of hardware efficiency, it is important to parallelize the memory access and the processing. Using the fast layered algorithm ensures that the decoding latency is short enough for a single codeword. If decoding of multiple codewords are necessary within one, possibly short, OFDM symbol, further parallelism on codeword level may be implemented, thereby avoiding the need for row orthogonality within a layer consisting of more than two rows.

Comparison of decoding latency

In the fast layered decoding algorithm, CN messages and LLR values of the previous layers are being read from memory while the current layer is being processed. By keeping both the memory access and computation process active simultaneously, the algorithm reduces decoding latency as discussed below:
· For layered decoding, decoding latency is calculated as follows:
(Latency to read active nodes for one row both CN and VN value + latency to calculate VN value for each active position + CN calculation time + latency to write the active nodes for both the CN and VN value) * number of layers * number of iterations

· For fast layered decoding, decoding latency is calculated as follows:
(Max (latency to read + latency to write the CN an VN values, latency to calculate the VN value for each active position + CN calculation time)) *number of layers * number of iterations

As is described above, the decoding latency is reduced from the sum of the memory access and processing latency to the maximum of the memory access and processing latency. In this way, there is no longer a need for pairwise orthogonal rows to achieve a more efficient hardware implementation.

Observation 1 By applying the fast layered decoding algorithm to a base matrix without pairwise row orthogonality, the decoding latency is reduced and becomes the same as for a base matrix with pairwise orthogonal rows.

Simulation results

Now, we provide simulation results to show the efficiency of the fast layered decoding for an LDPC code propose for NR [3]. In Figure 1, we compare different algorithms, including flooding, layered and fast layered in terms of frame error rate vs. E_s/N_0. We use information block length k=2048, for rates R=1/2 and R= 1/3, QPSK modulation and the sum-product algorithm with 15 iterations.
We observe that at a FER of 0.1, the gap between the layered (benchmark method) and fast layered is only 0.05 dB, while the fast layered decoding algorithm can be implemented as efficiently for any base matrix as the layered decoding algorithm can be implemented for base matrices with pairwise row orthogonality. It should be noted that the performance difference between layered and fast layered depends on the structure of the PCM. If the PCM is very dense, the impact of the approximations done for non-orthogonal rows with fast layered will be higher. On the other hand, if the PCM is very sparse, the impact is low.

[image:]
Figure 3 Comparison of different decoding algorithms: flooding, layered and fast layered.

Based on the above discussion, we propose the following:

Row orthogonality is not required to achieve low decoding latency and efficient utilization of hardware.

Conclusion
In this contribution, we have presented an LDPC decoder based on the layered decoding algorithm that utilizes hardware memory and processing units efficiently resulting in low decoding latency. We made the following observations and proposals:

Observation 1 By applying the fast layered decoding algorithm to a base matrix without pairwise row orthogonality, the decoding latency is reduced and becomes the same as for a base matrix with pairwise orthogonal rows.

1. Row orthogonality is not required to achieve low decoding latency and efficient utilization of hardware.

References
“Chairman's notes RAN1#87 of AI 7.1.5 on channel coding and modulation for new radio interface”, November 2016.
Hocevar, D. E. (2004). A reduced complexity decoder architecture via layered decoding of LDPC codes. IEEE Workshop on Signal Processing Systems.
R1-1611321, “Design of LDPC Codes for NR”, Ericsson, November 2016.

image3.emf
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E

s

/N

0

 [dB]

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

F

r

a

m

e

E

r

r

o

r

R

a

t

e

Flooding, R = 0.33

Flooding, R = 0.5

Layered, R = 0.33

Layered, R = 0.5

Fast layered, R = 0.5

Fast layered, R = 0.33

image1.emf
Memory access unit Processing unit

Read

ܮ ݍ

௝

�������ܴ

௠௝

Idle

Time

Idle

����Ǥ �ܮ ݍ

௠௝

ǡ ܴ

௠௝

ൌ ݂ ܮ ݍ

௠௡

��

�����ܮሺݍ

௝

ሻ

Write

ܴ

௠௝

����ܮሺݍ

௝

ሻ

Idle

Read

ܮ ݍ

௝

�������ܴ

௠௝

Idle

����Ǥ �ܮ ݍ

௠௝

ǡ ܴ

௠௝

ൌ ݂ ܮ ݍ

௠௡

��

�����ܮሺݍ

௝

ሻ

Write

ܴ

௠௝

����ܮሺݍ

௝

ሻ

Idle

image2.png
Time

Memory access unit

Read L(g;) and

R;’nl}i for min layer 1

Read L(g;) and

R;’nl}i for m in layer 2

Processing unit

Idle

Cale. RR7 = f(L(qymyn)) for min layer 1 and
calc. L(q;) based on Rgrfand Ry for min layer 1

Write L(q;) and R37” for m in layer 1,

Read L(qj) and R;’nl}i for m in layer 3

Cale. RR7 = f(L(qymn)) for min layer 2 and
calc. L(q;) based on Rgrfand Ry for m in layer 2

Write L(q;) and Ry for m in layer 2,

Read L(qj) and R;’nl}i for m in layer 4

Cale. RR = f(L(qmn)) for min layer 3 and
calc. L(q;y) based on Rgrfand Ry for min layer 3

